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Abstract

Understanding causes and effects is important in many parts of life, especially when
decisions have to be made. The systematic inference of causal models remains a chal-
lenge though. In this thesis, we study (1) “approximative” and “integrative” inference
of causal models and (2) causal models as a basis for decision making in complex sys-
tems. By “integrative” here we mean including and combining settings and knowledge
beyond the outcome of perfect randomization or pure observation for causal inference,
while “approximative” means that the causal model is only constrained but not uniquely
identified. As a basis for the study of topics (1) and (2), which are closely related, we
first introduce causal models, discuss the meaning of causation and embed the notion of
causation into a broader context of other fundamental concepts.

Then we begin our main investigation with a focus on topic (1): we consider the problem
of causal inference from a non-experimental multivariate time series (Xt)t∈Z, that is, we
integrate temporal knowledge. We take the following approach: We assume that (Xt)t∈Z
together with some potential hidden common cause – “confounder” – (Zt)t∈Z forms a first
order vector autoregressive (VAR) process with structural transition matrix A. Then
we examine under which conditions the most important parts of A are identifiable or
approximately identifiable from only (Xt)t∈Z, in spite of the effects of (Zt)t∈Z. Essentially,
sufficient conditions are (a) non-Gaussian, independent noise or (b) no influence from
(Xt)t∈Z to (Zt)t∈Z. We present two estimation algorithms that are tailored towards
conditions (a) and (b), respectively, and evaluate them on synthetic and real-world
data. We discuss how to check the model using (Xt)t∈Z.

Still focusing on topic (1) but already including elements of topic (2), we consider the
problem of approximate inference of the causal effect of a variable X on a variable Y
in i.i.d. settings “between” randomized experiments and observational studies. Our
approach is to first derive approximations (upper/lower bounds) on the causal effect,
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Abstract

in dependence on bounds on (hidden) confounding. Then we discuss several scenarios
where knowledge or beliefs can be integrated that in fact imply bounds on confounding.
One example is about decision making in advertisement, where knowledge on partial
compliance with guidelines can be integrated.

Then, concentrating on topic (2), we study decision making problems that arise in cloud
computing, a computing paradigm and business model that involves complex technical
and economical systems and interactions. More specifically, we consider the following
two problems: debugging and control of computing systems with the help of sandbox
experiments, and prediction of the cost of “spot” resources for decision making of cloud
clients. We first establish two theoretical results on approximate counterfactuals and
approximate integration of causal knowledge, which we then apply to the two problems
in toy scenarios.
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Kurzzusammenfassung

Ursachen und Wirkungen zu verstehen ist von großer Bedeutung in vielen Bereichen des
Lebens, insbesondere, wenn Entscheidungen gefällt werden müssen. Die systematische
Inferenz von kausalen Modellen bleibt jedoch eine Herausforderung. In dieser Disser-
tation werden (1) “approximative” und “integrative” Inferenz kausaler Modelle und (2)
kausale Modelle als Grundlage für Entscheidungsfindung untersucht. Mit “integrativ”
ist hier gemeint, dass Szenarien und Wissen jenseits von perfekt randomisierten Ex-
perimenten und reinen Observationsstudien mit einbezogen und kombinierten werden,
während sich “approximativ” darauf bezieht, dass das wahre kausale Modell eingegrenzt,
aber nicht eindeutig identifiziert wird. Als Grundlage für die darauffolgenden Abhand-
lungen zu den genannten Themen (1) und (2), die eng miteinander zusammenhängen,
werden zunächst kausale Modelle eingeführt, die Bedeutung des Begriffs der Kausalität
wird diskutiert, und der Begriff der Kausalität wird in einen breiteren Kontext von
anderen grundlegenden Begriffen eingebettet.

Dann beginnt die Hauptuntersuchung mit einem Schwerpunkt auf Thema (1): es wird
das Problem der kausalen Inferenz von einer nicht-experimentellen, multivariaten Zeit-
reihe (Xt)t∈Z betrachtet, d.h. es wird zeitliches Wissen integriert. Dabei wird der fol-
gende Ansatz verfolgt: Es wird angenommen, dass (Xt)t∈Z zusammen mit einer po-
tentiellen versteckten gemeinsamen Ursache – kurz “Confounder” – (Zt)t∈Z einen vek-
torautoregressiven Prozess erster Ordnung mit struktureller Übergangsmatrix A bildet.
Dann wird untersucht, unter welchen Bedingungen die wichtigsten Teile von A iden-
tifizierbar oder approximativ identifizierbar sind auf Grundlage von (Xt)t∈Z, trotz der
Einflüsse von (Zt)t∈Z. Im Wesentlich sind die Folgenden Bedingungen hinreichend: (a)
nicht-normalverteiltes, unabhängiges Rauschen oder (b) kein Einfluss von (Xt)t∈Z nach
(Zt)t∈Z. Es werden zwei Schätzalgorithmen vorgestellt, die auf Bedingung (a) bzw. (b)

10
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zugeschnitten sind, und auf künstlichen und Realdaten evaluiert. Des Weiteren wird
diskutiert, wie (Xt)t∈Z genutzt werden kann um die Modellannahmen zu überprüfen.

Als nächster Schritt im Rahmen von Thema (1), jedoch auch schon Elemente von Thema
(2) beinhaltend, wird das Problem der approximativen Inferenz des Effekts einer Vari-
able X auf eine variable Y in I.i.d.-Szenarien “zwischen” randomisierten Experimenten
und Observationsstudien erforscht. Unser Ansatz besteht darin, zuerst Approximationen
(untere/obere Schranken) bzgl. des kausalen Effekts, in Abhängigkeit von als gegeben
angenommenen Schranken bzgl. verstecktem Confounding, herzuleiten. Daraufhin wer-
den verschiedene Szenarien diskutiert, in denen Wissen oder Vermutungen integriert
werden können, die Schranken in Bezug auf verstecktes Confounding implizieren. Ein
Beispiel behandelt Entscheidungsfindung im Bereich der Werbung, wo Wissen bzgl. der
partiellen Einhaltung von Vorschriften integriert werden kann.

Dann wird der Schwerpunkt auf Thema (2) gelegt, beginnend mit einer Untersuchung
von Entscheidungsproblemen die im Bereich des Cloud-Computing auftreten, einem
Computing-Paradigma und Geschäftsmodell, das komplexe technische und ökonomische
Systeme und Interaktionen beinhaltet. Genauer geht es um die folgenden zwei Probleme:
Debugging und Regelung von Computersystemen mithilfe von “Sandbox”-Experimenten
einerseits, und Vorhersage der Kosten sogenannter “Spot”-Ressourcen für die Entschei-
dungsfindung von Cloud-Kunden andererseits. Wir beweisen zuerst zwei theoretische
Resultate zu approximativen kontrafaktischen Wahrscheinlichkeiten und zur approxi-
mativen Integration von kausalem Wissen, die wir dann in Spielzeugszenarien auf die
zwei genannten Probleme anwenden.

11



Chapter 1.

Introduction

1.1. Motivation

Many questions that arise in life, especially in the course of decision making, are about
causal relations. One may wonder about the cause of the abdominal pain one feels at
some point in time, and how a certain drug or a different diet will affect it; a manufacturer
may try to find out the factors that drive the demand for her product in general, or try to
infer the influence of a specific factor, say advertisement, to inform her decision making;
a policy maker may wonder about the influence of state debt on future economic growth,
or about reasons for the rise of nationalistic movements.

Causal questions – some similar, some different from the examples just given – have
certainly played a role for a long time in human history [Falcon, 2015, Hulswit, 2004]. It
is a rather new development though, that such questions and ways to answer them are
systematically studied from a mathematical and algorithmic perspective [Granger, 1969,
Imbens and Rubin, 2015, Shadish et al., 2002, Pearl, 2000, Spirtes et al., 2000, Shimizu
et al., 2006, Mooij et al., 2016, Peters et al., 2017]. One motivation for this development is
that formalization can help to clarify concepts, arguments and communication. Another
reason for this development are the economical and technological trends of automation
and digitalization, which prompt various issues in terms of design and mathematical
analysis of algorithms for causal inference.

12



Chapter 1. Introduction

This thesis lines up in the mentioned mathematical and algorithmic work on causation.
It makes heavily use of causal models as introduced by Pearl [2000], Spirtes et al. [2000] to
make further steps towards answering relevant causal questions, in particular those that
arise in the course of decision making. The thesis is especially driven by the following
issues:

• Randomized experiments are the gold standard for causal inference, but often they
are expensive, unethical or impossible to perform. On the other hand, plenty of
“cheap” observational (i.e., non-experimental) data is available. Approaches, often
based on causal models, have been developed to more heavily integrate observa-
tional data into causal inference [Pearl, 2000, Spirtes et al., 2000, Shimizu et al.,
2006, Mooij et al., 2016, Peters et al., 2017]. A limitation of these approaches is
that they often either need strong assumptions, or they only draw weak conclu-
sions.

Is it possible to integrate further forms of “cheap” knowledge (beyond observations)
as well as alternative forms of experimentation for causal inference? To what
extent can temporal information [Granger, 1969, Schreiber, 2000b, Eichler, 2012],
“imperfect” experimentation [Thistlewaite and Campbell, 1960, Shadish et al.,
2002], or say system specifications (in case inference is w.r.t. engineered systems)
help for causal inference, beyond established results? To what extent can causal
models help for the formal side of such integration? In which cases can approximate
but still meaningful results be established, which are often more realistic than
unique identification of a causal model?

• Decisions concerning natural, social and technical systems of high complexity have
to be made by humans, to stir them towards predefined goals. Furthermore, com-
plicated “decisions” also have to be made by controllers and, more generally, in-
telligent machines. Ideally, decision making is performed on the basis of an un-
derstanding of the effects of executing a decision, in particular when decisions are
about specific manipulations of the system (although, clearly, effects are not the
only criterion to judge a decision). How can causal models help here? In particular,
can they help when the available information is heterogeneous?

• Being a concept used so frequently in everyday life, it is surprising how much the
meaning of causation is still subject to debate. And while causal models as intro-

13



Chapter 1. Introduction

decisioncausal modelsystem itself/
prior knowledge

Chapter 3:
Chapter 4:
Chapter 5:

Figure 1.1.: Illustration of the main part of this thesis. We study fragments of the
“inference path” that starts at a given system and information about it and goes via
causal models towards the goal of an informed decision (concerning the system), depicted
in red along the x-axis. The focus of the respective chapter is depicted by a solid black
line, while topics that are briefly touched are depicted by a shorter dashed line.

duced by Pearl [2000], Spirtes et al. [2000] clarify some aspects of causal reasoning,
they also “mask” some issues, for instance about the notion of an intervention. Can
the meaning of causation be further clarified by better understanding its relation
to other fundamental concepts, such as time? Can such a clarification help to
advance causal inference methods?

1.2. Structure

The thesis is structured as follows:

• Chapter 2 contains prerequisites, and a summary of the subsequent chapters as
well as the main contributions.

• Then, Chapters 3 to 5 contain the main part of this thesis: a study of approximative
and integrative inference of causal models, and causal models as a basis for decision
making in complex systems. We schematically illustrate the structure of these
chapters in Figure 1.1.

• We conclude with Chapter 6, by weighing accomplishments and limitations of
causal models in general, and this thesis in particular.

14



Chapter 2.

Preliminaries and overview

Here we first provide the conceptual background for this thesis, in Section 2.1, and then
summarize content and contributions of the main part of this thesis in Section 2.2.

2.1. Preliminaries

We start, in Section 2.1.1, by introducing the rigorous mathematical causal modeling
language the whole thesis is based on, followed by an informal discussion of what we
mean by causation in Section 2.1.2. Afterwards, Sections 2.1.3 and 2.1.4 contain some
background regarding the two main topics we will use causal models for: learning of
causal models, and causal models as a basis for decision making. Last, in Section 2.1.5,
we embed the concept of causation into a context of other important concepts. Generally,
a significant part of the current chapter is devoted to painting a bigger picture, which
may sometimes be vague, before we go into rigorous mathematical details in the main
part of this paper, staring with Chapter 3.1

2.1.1. Mathematical concepts for causal modeling

We assume familiarity with basic probability theory as described, e.g., by Klenke [2013].
We usually presuppose some underlying probability space w.r.t. which random variables

1Thoughts in Sections 2.1.2 and 2.1.5 are – besides the mentioned references – based on personal
communication with Bernhard Schölkopf and Dominik Janzing.
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Chapter 2. Preliminaries and overview

are defined, without necessarily mentioning it explicitly. We consider random variables
with discrete as well as continuous domains. We usually denote the distribution of a
random variable X by PX or P (X), and the conditional distribution of X given Y

by PX|Y or P (X|Y ). By a (probability) density we either refer to a density w.r.t. the
Lebesgue measure, in the continuous case, or w.r.t. the counting measure, in the discrete
case, respectively. Usually, we write the density of a random variable X as pX(x), p(x)
or p(X) and the conditional density of X given Y = y is usually written as pX|Y (x|y),
pX|Y=y(x), p(x|y) or sometimes p(X|y). If V is a tuple or set of random variables, then
we may denote their joint distribution and density by PV and pV , respectively.

We also assume the reader to be familiar with basic information theory as described
by Cover and Thomas [1991]. By H(·) (H(·|·)) we denote the (conditional) Shannon
entropy, by I(· : ·) (I(· : ·|·)) the (conditional) mutual information, and by D(·‖·) the
Kullback-Leibler (KL) divergence, usually based on logarithms with base 2. Keep in
mind that, regarding the KL divergence of conditional densities p(x|y), q(x|y), we use
the following notation:

D(p(X|Y )‖q(X|Y )) :=
∑
x,y

p(x, y) log p(x|y)
q(x|y) ,

D(p(X|y)‖q(X|y)) :=
∑
x

p(x|y) log p(x|y)
q(x|y) ,

and similarly for continuous X, Y .

We assume familiarity with basic concepts from graph theory and probabilistic graphi-
cal models as described, e.g., by Lauritzen [1996], Spirtes et al. [2000], Pearl [2000]. In
particular, we will make use of the concepts of a directed acyclic graph (DAG), Marko-
vianity, faithfulness, (directed) paths, blocking (of paths), d-separation, and skeleton of
a DAG. By PAG

X we denote the set of parents of a node X in the DAG G (superscript
G is dropped if the graph is clear).

Now we define causal models mathematically following Pearl [2000], Spirtes et al. [2000].
We give two closely connected definitions and discuss their relationship in Remark 2.1.
Both definitions will be used in this thesis – it depends on the context which definition
is more helpful. Let V be a set of variables, and let dom(X) denote the domain of a
variable X.
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Definition 2.1 (Functional causal model). A functional causal model (FCM), or struc-
tural equation model (SEM), M over V consists of the following components:

• a background variable UX for each X ∈ V (we may also denote it by NX and refer
to it as noise or exogenous variable),

• a distribution on ΠX∈V dom(UX) that is a product distribution, denoted by PU and
referred to as background distribution (i.e., a joint distribution on the background
variables that makes them independent),

• a structural equation
X := fX(PAX , UX)

for each X ∈ V and some set of variables PAX ⊂ V called the parents of X, where
fX is called the structural (equation) function for X.

We call the elements of V the (endogeneous) variables of M .

Definition 2.2 (Graphical causal model). A graphical causal model (GCM), or causal
graphical model (CGM), or causal Bayesian network (CBN), M over V consists of the
following components:

• a DAG G with V as node set, called causal diagram or causal DAG,

• a conditional probability density pX|PAX=paX
(defined for all paX ∈ dom(PAX)) for

each X ∈ V .2

Again we call the elements of V the (endogeneous) variables of M .

Definition 2.3 (Probabilistic causal model). We refer to FCMs and GCMs jointly as
probabilistic causal models (PCMs) or causal models for short.3

Remark 2.1 (Objects implied by PCMs). Let V denote the set of endogenous variables.

2Restricting to cases where densities are defined is broad enough for this thesis, although a more
general definition may be possible.

3One may also read “PCM” as “Pearl/Pittsburgh causal model”, as Judea Pearl is probably the main
contributor to their theory, while the other important contributors, Peter Spirtes, Clark Glymour
and Richard Scheines all are or were faculty at Carnegie-Mellon University in Pittsburgh.
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• Generally, we consider a structural equation as a “stronger”, asymmetric form of
equation. In particular, a structural equation A := B implies the classical equation
A = B.

• An FCM with background variables UX , X ∈ V , naturally induces an underly-
ing probability space with outcome space ΠX∈V dom(UX) and distribution PU (the
background variables UX can be seen as random variables on that probability space
– they are simply projections – which renders the symbol PU for their joint dis-
tribution consistent with our probability theoretic notation introduced above, when
defining U = (UX)X∈V ). And for each X ∈ V , the structural equations of the FCM
“turn” X into a random variable on that underlying probability space, in case all
structural functions fY , Y ∈ V are measurable.

• Similarly, GCMs naturally induce a joint density pV over the variables in V , by
multiplying the conditionals, and the variables X ∈ V can then be seen as random
variables. If pV has support everywhere, then it, together with the causal DAG,
already fully determines the GCM.

• For simplicity, we will usually treat the probability spaces and random variables
induced by PCMs as part of the models themselves.

• The relation between FCMs and GCMs is as follows. Each FCM induces a unique
GCM in a natural way: the parents in the structural equations define the parents in
the causal diagram, and pX|PAX=paX

is defined as the density of fX(paX , UX), for
all variables X. It is easy to see though, that usually a given GCM is induced by
many FCMs, so a GCM does not determine a (unique) FCM. Later, in Example
5.1, we give a specific example of a property of an FCM that is often not determined
by a GCM.

• We will usually consider the causal diagram induced by an FCM as part of the
FCM.

• If we want to make clear w.r.t. which PCM the distribution of a random variable
X is meant, we may write PM(X) if we mean its distribution under M .
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YX

Z

(a) The joint density is
pY |X,Z(y|x, z)pX|Z(x|z)pZ(z).

YX x

Z

(b) Remove pX|Z(x|z).

YX

Z

(c) The new joint density is
pY |X,Z(y|x, z)pZ(z).

Figure 2.1.: Example for calculating the post-interventional density pMY |doX=x, given
a causal model M (part (a)), based on deriving the post-interventional causal model
MdoX=x (part (c)).

Now we introduce the formal concept of an intervention, which can be seen as an operator
on causal models. This operator needs the causal structure. It is not determined from
the joint probability distribution only.

Definition 2.4 (Post-interventional causal model and distribution). Given a causal
model M and a tuple of variables X of M , the post-interventional causal model MdoX=x

is defined as follows:

• if M is an FCM: drop the structural equations for all variables in X and replace,
in all remaining structural equations, variables of X by the corresponding constant
entries of x;

• if M is a GCM: drop the variables in X and all incoming arrows from the causal
diagram, drop the conditional density pX|PAX=paX

from the model, and fix the value
of variables in X to the corresponding entry of x in all remaining conditional
densities.

Based on this, we define the post-interventional distribution of Y after setting X to x in
M , denoted by PM

Y |doX=x or PM(Y |doX = x), by the distribution of Y in MdoX=x (we
may drop the additional “in M”, and the superscript M , if the underlying causal model
is clear).

If we explicitly want to refer to the variable Y as it is interpreted by MdoX=x, we may
write YMdo X=x

or YdoX=x instead of Y .

Let us give an example.
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Example 2.1 (Calculating post-interventional model and distribution). Consider a
GCM M with causal DAG as in Figure 2.1a (here X is an individual variable, com-
pared to Definition 2.4 where we allowed it to be a tuple of variables). To calculate
the post-interventional density pMY |doX=x, first perform the transformation of M depicted
in Figure 2.1b, resulting in MdoX=x depicted in Figure 2.1c. Then, simply calculate
pMY |doX=x as

pMdo X=x
Y (y) =

∑
z

pY |X,Z(y|x, z)pZ(z).

Post-interventional distributions will be essential to defining the semantics of causal
models in Definition 2.6 below, by interpreting them as the predicted outcomes of ran-
domized experiments. For a succinct terminology, we will consider the observational
distribution PZ , for any set of variables Z of a causal model M , as a special case of a
post-interventional distribution.

A further remark regarding the relation between an FCM M and the post-interventional
FCM MdoX=x is due here:

Remark 2.2. Let M be an FCM and X, Y be individual variables or sets of variables
in M . Following Pearl [2000, chapter 7.1.1 and chapter 7.2.2], we consider the random
variables contained in M and the random variables in MdoX=x, respectively, to be defined
over the same underlying probability space (outcome space ΠX∈V dom(UX) with distribu-
tion PU). This allows expressions like P (YdoX=x|X=x′), where X is a random variable
in M and YdoX=x a random variable in MdoX=x, to be meaningful. This quantity (the
“counterfactual”, see also Section 5.3.1) is sometimes written as P (Y |doX=x,X=x′).
Note that this quantity is not uniquely determined by a GCM only, it is necessary to
know the “underlying” FCM (see also Example 5.1).

Keep in mind the following statement, which links causal model and observational dis-
tribution, and justifies the causal Markov assumption which we will briefly discuss in
Section 2.1.3.2.

Fact 2.1 (Causal model implies causal Markov assumption [Pearl, 2000]). Let M be a
causal model over variables X1, . . . , Xn with causal DAG G. Then the joint distribution
X1, . . . , Xn induced by M is Markovian w.r.t. G.
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Also keep in mind the following terminology [Pearl, 2000, Spirtes et al., 2000, Peters
et al., 2017].

Definition 2.5. Let M be a causal model with variable set V and causal DAG G.

• We call a linear ordering over V a causal ordering (relative to M), if it is a
topological sorting of G, i.e., a linear ordering of the nodes of G such that there is
no arrow form a “smaller” to a “larger” node.

• A variable Z ∈ V is called a confounder or common cause of variables X1, . . . , Xn ∈
V different from Z, if for all i there is a directed path from Z to Xi that is not
blocked by any Xj with j 6= i. (For instance, in the causal DAG in Figure 2.1a on
page 19, Z is a confounder of X and Y .)

• A set of variables W ⊂ V is called causally sufficient, if all confounders Z ∈ V of
variables in W are already contained in W .4

• Relative to a given setting, we call the variables in V that are measured in that set-
ting observed variables / observables, and those not measured unobserved/hidden
variables. Usually we depict hidden variables by (dashed) gray circles, such as the
Z in Figure 2.1a.

• If we are interested in inferring the causal effect of a variable X ∈ V on a variable
Y ∈ V , we may call X the treatment variable, Y the outcome variable, and
P (X|PAX) the assignment mechanism [Imbens and Rubin, 2015].

• Let Q be any (joint) distribution over ∏X∈V dom(X). We say that Q satisfies
causal minimality w.r.t. the DAG G, if it is Markovian w.r.t. G but not w.r.t. any
proper subgraph of G.

Note that some further, more specific definitions will be given in the respective chapters
where they are used.

4See Peters et al. [2017, Definition 9.1] for a refined definition of causal sufficiency called “interventional
sufficiency”.
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2.1.2. Meaning of “causation”

While we already gave some examples in Section 1.1, here we try to explicitly define
what we mean by the causal effect of a variable X on a variable Y . In particular,
we restrict to a meaning of causal effect (or “influence”) which can be formalized by
a conditional density of Y given X = x and denote it by pcY |x for the moment. We
present two definitions: one that reduces causation (essentially) to interventions, which
is somewhat unsatisfactory from the empirical point of view; and one which reduces
causation to randomized experiments.

This section is necessarily more vague, and may contain statements more subject to
debate, than the previous one. Roughly speaking, our goal here is to express the meaning
of causation in terms that are clearer and “more empirical” than causation itself. In
this sense, we will try to work out precisely which definition is relative to which other
concepts, in particular to avoid circularity.

2.1.2.1. Relative to interventions and PCMs

One possibility is to define the causal effect of a variable X on a variable Y as the density
of Y after intervening on X, setting it to a fixed value x. (We will give further details
on what is meant by an intervention in Section 2.1.2.3.)

And there is a clear way to model interventions with PCMs: Given say a GCM M , it
seems natural to translate the intervention on X into a transformation of M where we
remove the conditional pX|PAX=paX

from the joint density, and the corresponding arrow
from the causal DAG, and fix the value of X to x in all remaining conditional densities.
The resulting density of Y exactly coincides with the post-interventional distribution
pMY |doX=x we introduced in Definition 2.4. This allows us to use PCMs to formally reason
in various ways. In particular, given a PCM M , relative to M the meaning of the causal
effect, for which we introduced the term pcY |x above, is simply given by PM

Y |doX=x.5

5If the predicted outcome of an intervention is wrong then either the specific model is poor or it was
not an intervention – or PCMs do not capture well the notion of an intervention in general.
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2.1.2.2. Relative to randomized experiments

While illustrating how the language of PCMs works, clearly we have to go beyond the
above “definition” of causation: Usually, the causal model M does not just fall into one’s
lap, instead a definition has to be more based on the empirical world. Unfortunately
in empirical settings, (point-)interventions are hard to define and perform. Therefore,
we base our definition on randomized experiments, as is common practice [Imbens and
Rubin, 2015].

Definition 2.6 (Causation and correct causal model). We define actual causal effect
and correct causal model as follows.

(a) The (actual/true) causal effect of a variable X on a variable Y , pcY |x, is defined
as the conditional density of Y given X obtained from a randomized experiment,
where X is randomized (and similarly when X, Y are sets of variables).

(b) Given a set V of variables, we say that a causal model M over these variables is a
correct/true causal model, if

– the joint density pMV coincides with the observational density of the variables
in V ,

– the causal diagram of M is causally minimal6 w.r.t. the observational density
of the variables in V ,

– for any two sets of variables X, Y ⊂ V , the post-interventional density pMY |doX=x

coincides with the actual causal effect pcY |x of X on Y as we defined it in
part (a).

2.1.2.3. Remarks

Clearly, the above Definition 2.6 is not perfect either and swipes under the rug various
issues. Therefore, let us make some remarks.

6This is required because otherwise the causal diagram may contain “too many” arrows which do not
correspond to actual effects.

23



Chapter 2. Preliminaries and overview

• Why randomization and not intervention. Consider some system with vari-
ablesX, Y and assume we want to infer the effect ofX on Y . If we could “perfectly”
intervene on X, then no randomization would be necessary. One would simply in-
tervene several times, setting X to different values (possibly rerun the system for
the same value several times if it is stochastic). By a “perfect” intervention here
we mean an intervention on the system similar to how we defined an interven-
tion in a PCM: one destroys the mechanism that governs X, sets X to a specific
value, but keeps the remaining mechanisms the system consists of invariant (on
the population level, if the system is stochastic).

However, in practice it can never be ruled out that the decisions on when and how
to “intervene” are governed by some factor which also affects the subsequent Y ,
i.e., which does not leave the rest of the system invariant. For instance, it may
happen that the experimenter would systematically increase the value of X over
time, while the evolution of time also changes the system in a systematic way.

That is, it is hard to make sure that what the experimenter does is a perfect
intervention. This is why randomization is important, as it ensures that the value
X is set to is independent of the (variation of the) rest of the system. It can still
be argued that the idea underlying randomized experiments is based on some form
of an intervention – a “soft” intervention – and we will comment on this below.

• What is a valid randomized experiment? We leave open what precisely con-
stitutes a valid randomized experiment. Important concepts in this regard are
“external validity” (whether it is appropriate to generalize from the experimen-
tal population7) and “internal validity” (whether the experimental setup ensures
that the causal effect is correctly estimated w.r.t. the experimental population, in
particular, that there is no hidden confounder) [Shadish et al., 2002, Imbens and
Rubin, 2015]. These concepts are widely applied in the context of causality and

7We sometimes speak of a “population” as the object study, and sometimes of a “system”. The former
seems more suitable in case we are given different samples, say humans, from a population which
can be defined based on some unifying trait. The latter seems more suitable for cases where in fact
only “one (stochastic) individual” is given, say the global economy, but we observe this individual
in various states – e.g., a finite trajectory of the system over time. While sometimes it may be
important to distinguish between both, here we use the terms more or less interchangeably. Most
of the time we reason on the level of probability distributions anyway, which can be done in both
cases.
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YX

Z

(a) Causal DAG for undis-
turbed, original population.
Gray means hidden.

YX

Z

(b) Soft intervention – re-
moving the original assign-
ment mechanism ...

YXe

Z

(c) ... and replacing it by
randomization.

Figure 2.2.: PCMs and the notion of a soft intervention can help to argue why random-
ized experiments are a valid method of causal inference. The difference to Figure 2.1 is
that there we used a “point intervention”, which is how causation is defined in PCMs,
setting X to a fixed value x and deleting the mechanism for X entirely, while here we
replace the mechanism by a new, randomized one, whose output we denote by Xe.

experimentation, and are usually not based on PCMs. However, validity can also
be discussed using PCMs, and we will do so in the next point.

• Definition and analysis of validity based on PCMs, “interventions” and
“soft interventions”. Consider some population whose correct causal structure
is given by M with causal DAG as depicted in Figure 2.2a (which does not limit
generality, as the hidden Z could be anything). Let us, for the moment, define a
valid randomized experiment to be one that corresponds to the soft intervention8

[Eberhardt and Scheines, 2007] of replacing the conditional pX|Z(x|z) in M by
the new9, unconditional density pXe(x) (with support everywhere) of the variable
Xe that replaces X. The intuition is that randomizing X means replacing its
generating mechanism by randomization, which by definition makes the new Xe

independent of the past of the universe and thus of all possible confounders Z.
See Figure 2.2b for a graphical illustration. (Clearly, this definition of validity is
rather far from empirical, as we based it on M , which we want to infer in the
first place; but nonetheless, it clarifies the idea of validity.) Let M e denote the
resulting causal structure, which models the experimental setting, whose DAG is
depicted in Figure 2.2c, and whose joint density we denote by peXe,Y,Z(x, y, z). Now

8The author of this thesis was not able to find a precise definition of “soft” interventions in the
literature. It needs to be mentioned though, that also interventions where the conditional pX|Z(x|z)
is replaced by another conditional, which still depends on Z, are considered as “soft” interventions
[Eberhardt and Scheines, 2007].

9It generally woks out better to introduce new variables instead of redefining old ones in such cases.
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the crucial point is that

peY |Xe(y|x) =
∑
z

peY |Xe,Z(y|x, z)pZ(z) (2.1)

=
∑
z

pY |X,Z(y|x, z)pZ(z) (2.2)

= pY |doX=x(y|x), (2.3)

where Equality 2.2 is based on how we obtained M e from M : the conditional for Y
was not changed, i.e., peY |Xe,Z = pY |X,Z ; and Equality 2.3 is simply Definition 2.4.
This means that a valid randomized experiment identifies the true causal effect,
when accepting the definition of validity based on soft interventions as well as that
of causal effect based on interventions in Section 2.1.2.1. This sort of reasoning
has been analyzed recently [Pearl and Bareinboim, 2011a, Bareinboim and Pearl,
2014], on a more general level, under the title “transportability”.

It remains subject to debate to what extent the notion of a soft intervention can
be made empirically meaningful. How would one test whether the experimenter
does not accidentally also manipulate the mechanism that generates Y – pY |X,Z

in the above calculation? (See also the brief discussion of modularity in Section
2.1.5.)

• An “ideal-empirical” definition. Instead of defining causation based on inter-
ventions or randomized experiments, one could give the following “ideal-empirical”
definition10 (which is similar to, but tries to go deeper than what we referred to
as “perfect” intervention above), trying to capture what empirical causal inference
aims at: Assume we are concerned with the effect of a variable X, defined for some
time point t, on a subsequent variable Y .

The whole universe would have to “run” several times, each run starting at t,
with completely identical initial condition except that the value of X varies. The
causal effect would then be given by how the Y differs between the different runs.11

This definition more or less coincides with the one based on “potential outcomes”
[Imbens and Rubin, 2015], but also takes into account thoughts from Granger

10This definition is based on personal communication with Bernhard Schölkopf.
11Probably a similar definition could be given in terms of a distribution of initial conditions instead of

a single one, which would be closely related to our remark on the concept of randomization below.
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[1969] (see also Section 3.4.2). Note that we invoked the whole universe to avoid a
circular definition: for instance, if we would just require that some sort of “isolated”
system around X and Y would have to run several times, then in turn we would
have to define “isolated” which may require some form of causal notion. Also note
that the definition can be seen as some sort of “twin study” on the level of the
universe.

It is important to note that in this definition, whether the variation in X between
the several runs is due to some imaginary investigator setting X, or if the several
runs are just observed, does not matter, as the rest of the initial condition is
assumed to be invariant between the several runs, which excludes the possibility
of a hidden confounder for X and Y .

One reasonable path to causal inference seems to be to start with such an ideal
definition and then successively write down the assumptions that are necessary to
infer causation in practice. Such a path was – to some extent – taken by Imbens
and Rubin [2015].12

Clearly, the above ideal definition is not free of issues, some of which are: to com-
pare the different outcomes of Y , one would have to stand “outside” the universe,
which somewhat contradicts the definition of a universe; it may not be possible
to vary one variable in the initial condition of the universe while keeping the oth-
ers invariant, or it may even be impossible to conceptually distinguish between a
variable and “rest of the universe”13; the way the definition relies on the notion of
(global) time may be problematic under physical theories such as general relativity
theory; and in general, ideal definitions are probably more a matter of taste than
empirical definitions.

• A remark on randomization. Let us make a remark regarding the concept of
randomization, which is central to causal inference, as its meaning seems clearer

12In contrast, in the work on PCMs by Pearl [2000], Spirtes et al. [2000] and others, such considerations
are often swiped under the rug; “interventions” are treated as some kind of notion living in both
worlds – the model world and the empirical world. But on an ideal level, a definition like the ideal
one we gave above may be more helpful, and on a practical level, it is often still unclear what an
intervention is supposed to be, as we discussed. But it may well be that when the notion of an
intervention is better understood it can perform the balancing act between model and empirical
world, such as the notion of force did in Newtonian mechanics.

13This is based on personal communication with Dominik Janzing.
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than the meaning of causation itself (though not empirically testable). As we ar-
gued above, based on PCMs, if X is randomized, then its correlation with the
subsequent Y coincides with its causal effect on Y . Without using PCMs, the
argument can also be stated as follows, which is related to our “ideal-empirical”
definition above: randomization, i.e., independence between X and all other vari-
ables measured at the same time or before X, ensures that all other variables
measured at the same time or before X have the same distribution for both X = 0
and X = 1 (in case X is binary); so all differences in the distribution of Y between
X = 0 and X = 1 have to be due to the variation in X. Either way, w.r.t. the
population in a randomized experiment, randomization reduces the difficult notion
of causation to the much simpler notion of correlation. Clearly, this ignores the
problem that often we want to infer a causal effect w.r.t. some original population
instead of the experimental population, which brings us back to the problem of
validity of a randomized experiment, which we commented on above. In spite of its
importance, we only briefly discuss randomization in this thesis (see also Section
2.1.5).

• Statistical issues. In Definition 2.6, we ignored statistical finite-sample issues, or,
more broadly speaking, the problem of induction from finite observations. Instead,
we pretended that experiments and observations would directly give us population-
level distributions. In a more precise definition, one would rather have to speak
of falsification (w.r.t. some fixed significance level) and estimation of the causal
effect of X on Y .

• Other meanings and definitions. All in all, the concepts which we reduce
causation to – interventions and randomized experiments – are themselves not free
of controversy.14 But arguably, these concepts seem significantly less opaque than
causation itself.

It is worth emphasizing that Definition 2.6 does not provide a meaning for all usages
of “causation”. For instance, recall the abdominal pain example from Section 1.1
which concerned the cause of one individual event instead of a persistent variable.

14Another criticism of these sort of definitions, especially randomized experiments, would be that they
confuse the meaning of causation with how to empirically test causal statements. But the difference
between both is hard to discern.
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And there are yet other usages of “causation”. For instance, Hume and Hendel
[1955] writes: “we may define a cause to be an object, followed by another, and
where all the objects similar to the first are followed by objects similar to the
second”. If we take this literally, not variables and not even events form the causal
relata, but rather objects. (“Causal relata” means the subject and object of a causal
statement.) Yet another usage can be observed in Aristoteles’ work [Falcon, 2015,
Hulswit, 2004]: He considered the “material” cause as one type of cause (out of
four). But the “material” cause more or less means the physical substance a body
is made of. This indicates that back then, the meaning of causation was somewhat
broader than and different from what it is today.

Also keep in mind that even when restricting to variables as causal relata, there
are yet other definitions of causation. Sometimes, causation is defined in terms
of the ”underlying mechanisms” [Pearl, 2000] that may be known based on say
physical or chemical theory. Another definition was suggested by Granger [1969],
and we will come back to it in Section 3.4.2. Historically, causal statements were
also seen as answers to “why?”-questions and we will get back to that in Section
2.1.5.

2.1.3. Learning causal models

One of the two main topics of this thesis, mainly spanning Chapters 3 and 4, is causal
learning in the framework of PCMs. In this section, we introduce some background
as well as terminology, and briefly discuss the parts of this thesis that fall under this
topic.

2.1.3.1. Definition and classification of causal learning

By causal learning (alternatively: causal inference or causal induction) we mean the
material and mental process that aims at concluding correct causal models based on
prior knowledge as well as interaction between investigator and investigated system (in
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the sense of measurements and manipulations of the system).15 The process may also
be (partially) automated.

Remark 2.3 (Provisional features for classifying causal inference methods). One focus
of this thesis is on the variety of methods for causal inference. A systematic classification
of them is difficult due to their heterogeneity, but useful to compare and understand them.
In this sense, within the scope of this thesis, we propose to provisionally classify1617causal
inference based on the following two features of causal inference methods, which are
closely intertwined:

(1) the form of constraints on the causal model the method yields (for instance, it may
output constraints on P (Y |doX = x), for some X and Y ),

(2) precisely which characteristics of the settings the method is applicable to, including
the form of potential prior knowledge, lead to the constraints (for instance, temporal
knowledge implies a constraint on the causal ordering).

2.1.3.2. Classical methods

We briefly (and without raising any claim to completeness) review some established
classes of causal inference methods with a focus on the two features we proposed above.

• Experimental causal inference: It is immediate from Definition 2.6, part (a),
that the causal effect of X on Y can be inferred through randomized experiments

15Alternatively, one could also define causal inference as any inference that aims at drawing causal
conclusions (statements about cause-effect relationships), and as causal learning or causal induction
the type of inference where the causal conclusion does not follow with “logical” necessity from the
premises.

16This is just a provisional classification for this thesis. More systematic classifications have been
proposed. For instance Imbens and Rubin [2015] classify w.r.t. the assignment mechanism, i.e., the
mechanism that generated the “treatment” variable, whose effect on the “outcome variable” we aim
to infer.

17Based on our definition of causal learning, another important class of methods are those that se-
quentially decide about the next experimentation step, which cannot be described so well by our
two features. Such methods are also closely related to reinforcement learning, which we will briefly
touch in Section 2.1.4. Note that, figuratively speaking, sequential methods would add an arrow
from “decision” to “system itself / prior knowledge” in the diagram in Figure 1.1 on page 14.
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– no reasoning left to be done.18 But if one starts from the intervention-based
definition in Section 2.1.2.1 instead, one can argue why and how randomized ex-
periments form a valid causal inference method, as we did in Section 2.1.2.2 based
on the notion of soft interventions.

In terms of the two features of causal inference methods we proposed in Remark 2.3,
the argument can be (re-)phrased as follows. Randomization implies the absence
of confounding. Assuming that the experiment is a soft intervention implies that
only the assignment mechanism for X changes between original population and
experimental population. Together, this allows to conclude that the experimental
conditional distribution of Y given X uniquely identifies the post-interventional
distribution PY |doX=x.

• Observational causal learning: By observational causal learning we mean
causal learning from a presumably independent and identically distributed (i.i.d.)
sample of measurements from some multivariate distribution, without any further
causally relevant information. In particular, the sample usually does not come
from an experiment, and even if it came from an experiment, this would not be
known.19 Stated differently, by observational causal learning we mean any causal
learning method which “at most” uses some multivariate distribution as input –
nothing more, but potentially less (say only a finite sample from the distribution).
Although not being in the scope of this thesis, we discuss observational causal
learning in some detail as it is probably the class of causal inference methods that
has been studied most intensively within the framework of PCMs, and also because
it inspired some ideas in this thesis. (It would be equally justified to consider causal
inference from time series as falling under – a broader notion of – observational
causal inference, and then a significant part of this thesis would in fact fall under
this topic.)

Keep in mind that, as usual [Spirtes et al., 2000, Pearl, 2000], we say that, given
variables X1, . . . , Xn, their joint distribution obeys the causal Markov assumption

18Clearly, meaning and inference of a statement (or how to argue for a statement / its “truth”) are
closely intertwined. The goal of inference usually is to conclude a correct statement, but the cor-
rectness of a statement can hardly be judged without having its meaning.

19Clearly, also causal inference from experiments is based on observations – but besides these observa-
tions, the setting includes (randomized) manipulations (which produce the observations).
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if statistical conditional independence between them implies d-separation in the
correct causal DAG over them. And if the converse holds true, we say that the
joint distribution obeys the (causal) faithfulness assumption. The causal Markov
assumption can be seen as a generalization of “Reichenbach’s principle” which we
will briefly discuss in Section 2.1.5. Causal Markov and faithfulness (and causal
sufficiency) assumption together allow the reasoning underlying one of the most
popular methods for causal inference from purely observational data, the “PC
algorithm” [Spirtes et al., 2000]. This algorithm is solely based on conditional
independences, and usually is not able to identify the causal diagram uniquely,
instead it just outputs the so-called “Markov equivalence class” [Spirtes et al.,
2000].

Other methods go beyond conditional independences, taking into account more
properties of the observed distribution [Peters et al., 2017, Mooij et al., 2016].
Examples include methods based on the additive noise model [Peters et al., 2014,
Shimizu et al., 2006] or the information-geometric approach to causal inference
(IGCI) [Janzing et al., 2012], where the latter only applies to the case of two
variables so far. These methods uniquely identify the causal DAG, given their
underlying assumptions are correct.

Generally, since causal knowledge is significantly richer than statistical knowledge,
causal inference from purely observational data seems limited in its possibilities.
The more it tries to identify the causal model, the stronger assumptions are nec-
essary, assumptions which may only hold in special cases (and the domain these
special cases belong to may be unknown).20 Nonetheless, there are empirical hints
that causal learning from pure observations works to some extent also in broader
domains [Mooij et al., 2014]. And on a more theoretical level, while pure obser-
vations cannot uniquely identify the underlying causal structure in general, there
seems to be no principle reason that excludes that in rather broad domains pure
observations (1) can help to approximate the causal structure and (2) can out-

20Roughly speaking, general assumptions plus specific knowledge (in the form of just measurements
or beyond) yield causal conclusions, and fixing the available knowledge, more assumptions imply
stronger identifiability results, less assumptions weaker identifiability results. One motivation un-
derlying this thesis is to find settings, were forms of knowledge – “inputs” to causal inference –
are available beyond pure observations, such that less assumptions may still constrain the set of
candidate causal models strong enough (though not lead to unique identification).
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perform random guessing on average (that is, do not work in every case, but still
“correlate” with causation when considering many instances).

The study of observational causal inference is strongly motivated by the cheapness
of observational data (Section 1.1), and its value of “prioritizing the experimental
search space”: in case it is not clear what randomized experiment to perform next,
nothing is lost by letting this decision be informed by observational causal inference
methods.

Maybe one of the main challenges of observational causal inference is to explicitly
identify the domains in which the respective observational causal learning methods
work.

• Back-door criterion. An important results for causal inference based on PCMs
is the so-called back-door criterion [Pearl, 2000, Spirtes et al., 2000] (and the front-
door criterion, which is closely related). Given a set of variables V , a subset of
observed variables W ⊂ V whose joint distribution P (W ) we are given, and knowl-
edge of the causal DAG G underlying V , the back-door criterion tells when and
how a causal effect between variables in W can be (uniquely) identified from the
given. (The trivial case is W = V which means that we are already given the com-
plete GCM and thus obviously can calculate all post-interventional distributions
– unless the joint distribution P (W ) does not have support everywhere.)

The basic idea underlying the back-door criterion is to look at the definition of the
post-interventional distribution (Definition 2.4) and see which parts of the joint
distribution it depends on and which not.

Let us give an example.
Example 2.2 (Back-door criterion). Consider the causal DAG in Figure 2.3. We
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YX

B A

Figure 2.3.: Simple example of the back-door criterion: the effect of X on Y can be
identified in spite of A being hidden.

have, based on Definition 2.4,

p(y|dox) =
∑
a,b

p(y|x, a, b)p(a, b) (2.4)

=
∑
a,b

p(y|x, a, b)p(a|b)p(b) (2.5)

=
∑
a,b

p(y|x, a, b)p(a|x, b)p(b) (2.6)

=
∑
a,b

p(y, a|x, b)p(b) (2.7)

=
∑
b

p(y|x, b)p(b), (2.8)

where Equation 2.6 is due to d-separation in the causal DAG. So we identified
p(y|dox) from p(x, y, b) only (which we assumed to be observed), as Equation 2.8
demonstrates. Observe that B blocks the “back-door” path from the hidden con-
founder A to X, which gives the back-door criterion its name. But the back-door
criterion also applies to more complex causal DAGs.

Let us briefly summarize one of the main ideas underlying inference based on PCMs:
Past observables are related to future observables by assuming that some mechanisms
(i.e., structural equations) of the system that generated the past observations reoccur in
the system underlying the future observations, while allowing some other mechanisms to
vary between the two systems. Depending on the precise variations and invariances, this
allows to constrain or even uniquely identify the distribution of the future observables.
The most important example is the future system being a system where some observ-
ables are set to constant values, in which case certain mechanisms/causal influences are
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revealed.

2.1.3.3. Class of methods this thesis focuses on

In this thesis we try to advance causal inference methods that fall into the following two
classes, which are closely intertwined:

• Regarding feature (2) of causal inference methods we defined in Remark 2.3, we
investigate integrative methods. We mean integration in several ways, which over-
lap.

On the level of direct interaction with the system under investigation, we mean
that we include settings beyond perfectly randomized experiments or purely ob-
servational (i.i.d.) data. Examples include “partial” randomization (Section 4.5.2)
or time series measurements (Chapter 3). (As mentioned in Section 1, the motiva-
tion for such integration is that randomized experiments or observational studies
alone are sometimes an unsatisfactory basis for causal inference, as they may be
too “expensive” or contain too little causal information, respectively.)

On the level of knowledge given a priori 21, we aim to integrate all causally relevant
and potentially heterogeneous information about the system that is available. An
example of such prior knowledge are system specifications and program code in
the case of computer systems (Sections 5.4.2.1 and 5.6.2, where we only briefly
touch this idea though). Ideally, one would also include knowledge in the form of
descriptions in (simple) natural language.

On the level of inference, we mean the synthesis of the available partial information
into a – not necessarily unique – global causal model. Examples include integra-
tion of sandbox experiments (Sections 5.6.1 and 5.4.3) and “plugging” together
marginal and/or conditional distributions, by (partially) knowing the causal DAG
(Sections 5.3.2 and 5.5.2).

21“A priori knowledge” which serves as inputs to causal inference is not to be confused with the
assumptions that underly many causal learning methods and that are usually not based on specific
knowledge of the systems they are applied to. Often, assumptions are lawful and so are “true” only
if they are tautologies, in the narrow sense, while knowledge is true by definition, in the narrow
sense, although we may sometimes mix knowledge with belief. Rigorously distinguishing between
knowledge and assumptions (and beliefs) is not always possible though.
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Note that inferring a global causal model on the basis of heterogeneous data sets,
for instance, data sets from overlapping but different sets of variables, has been
investigated by Tsamardinos et al. [2012] under the name “integrative causal anal-
ysis”. And while we use “integrative” as a very preliminary working title in this
thesis not to be meant as a proposal of a lasting definition, it can be seen as a
generalization of the definition by Tsamardinos et al. [2012], including more kinds
of “inputs”.

• Regarding feature (1) of causal inference methods we defined in Remark 2.3, we
investigate approximative methods: methods that often do not lead to a unique
identification of the correct causal model, but still constrain the set of explanatory
causal models.22

An important result in this direction is the PC algorithm we mentioned in Section
2.1.3.2 above, which works on the basis of purely observational data and outputs
the Markov equivalence class of the correct causal DAG (if the underlying assump-
tions hold true). But one can think of a whole variety of ways in which causal
models can be constrained – for instance in terms of causal ordering. PCMs provide
an expressive language for formalizing the various constraints. Within this thesis,
examples include identification of structural coefficients up to a finite number of
possibilities (Section 3.6.2), approximations of the causal effect based on bounds
on confounding (Section 4.4), approximation of the structural counterfactual, a
property of an FCM (Section 5.3.1) and approximate integration of conditionals
(Section 5.3.2).

Clearly, it depends on the specific scenario whether approximate causal inference
does provide helpful insights, or if the approximations are to coarse to be mean-
ingful. Nonetheless, it seems that aiming for approximate identification of causal
models is often more realistic than aiming for unique identification.

A reoccurring issue in our investigation of causal learning will be hidden confounding: If
ones assumes, besides having distributions, to know the causal ordering of the observed
variables (to some extent), then hidden confounding remains as the primary challenge for

22We ask the reader to kindly excuse some imprecision in terminology here. It is clear that inductive
inference always contains some uncertainty. What we mean here by “approximate methods” are
methods that fail to uniquely identify the true causal model even on the population-level.
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YX

Z

Figure 2.4.: Example of hidden confounding.

causal inference. This is because if we know the causal ordering, under the assumption of
causal Markovianity and faithfulness, the observational distribution already determines
the causal model – unless there are hidden confounders [Spirtes et al., 2000]. In this
sense, hidden confounding will play a central role in Chapters 3 and 4.

Let us give an example to illustrate the problem of hidden confounding.

Example 2.3 (The problem of hidden confounding). We show how hidden confounding
can distort (naive) observational causal inference. The example is stylized, but similar
studies were in fact performed [Lawlor et al., 2004].

Consider the variables X, Y, Z, where X denotes the dose of hormone replacement ther-
apy applied, Y ∈ R denotes the severity of subsequent coronary heart disease, and Z

denotes the wealth. Assume the true causal model is given by the DAG in Figure 2.4 and
the structural equations

X := Z +NX ,

Y := 0.5X − Z +NY ,

where we leave the noise distributions unspecified for the moment. A a purely observa-
tional study, that only considers X, Y , yields

E(Y |X = 1)− E(Y |X = 0) = −0.5,

based on
Y = 0.5X − (X −NX) +NY = −0.5X +NX +NY .

This may mislead to the conclusion, that hormone replacement therapy X causes a less
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severe coronary heart disease Y , while in fact

E(Y |doX = 1)− E(Y |doX = 0) = 0.5,

based on
E(Y |doX = x) = 0.5x+ E(−Z +NY ),

calculated from Definition 2.4. That is, hormone replacement therapy X actually causes
(a more severe) coronary heart disease Y . The reason for the observational study to
be mislead is the strong negative correlation between X and Y that is induced by the
unobserved wealth Z: a high Z induces higher intakes X and (say due to more money
spend on health in general) lower Y .

2.1.4. Causal models for decision making

On the one hand, having a good causal understanding of the world can be seen as an
end in itself. On the other hand, a main focus of this thesis is on causal models as a
means for informed decision making towards given goals. We already gave examples
in Section 1.1: a personal decision regarding which drug to take should be informed
by knowledge on the effect of the available drugs; decisions on fiscal policy should be
informed by models about the effects of (high) state debt; political or civil action against
nationalist and populist movements should be based on an understanding of the causes
for the emergence of such movements. Generally, it may be that directly the effect of a
decision is of interest, or it may be that one is interested in causal effects that are only
indirectly linked to a decision.

In this section, we give some background for decision making using PCMs and briefly
discuss the parts of this thesis that fall under this topic.

Decision making has been investigated intensely in the field of “decision theory” [Steele
and Stefánsson, 2016], which, roughly speaking, studies the reasoning that leads to an
“instrumentally rational” agent’s choice. By “instrumentally rational” we mean agents
that (1) have (own) goals and (2) chose suitable means to achieve them.23

23Often, such behavior is simply called “rational”. But it can be argued, that a general concept of
rationality also comprised the choice of goals, a choice which does not itself have a clear goal, but
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One of the most popular formal approaches is expected utility theory [Von Neumann and
Morgenstern, 2007, Jeffrey, 1990], according to which instrumentally rational agents, in
uncertain situations, make the choice that maximizes their expected utility. In other
words, instrumentally rational agents are modeled as solving an optimization problem
– under uncertainty – with the objective function formalizing their goal. This hypoth-
esis can be justified based on a certain axiomatization of instrumental rationality, as
Von Neumann and Morgenstern [2007] showed.

Closely related to this, the problem of designing intelligent machines (or “artificial intel-
ligence”) is often cast as designing automatic agents that sequentially “decide”, under
uncertainty, such as to optimize some predefined utility (or “reward”) function. This
paradigm is often referred to as “reinforcement learning (RL)” [Sutton and Barto, 1998],
and is closely related to control theory [Aström and Murray, 2010]. A core challenge
in this paradigm is the trade-off between exploration to improve the agent’s model and
exploitation of (i.e., maximization of the utility under) the current model.

Causation is often not explicitly thematized in studies of decision making – which does
not mean that it is not implicitly handled correctly. However, a subfield of decision
theory, referred to as causal decision theory [Steele and Stefánsson, 2016, Weirich, 2016,
Lewis, 1981, Woodward, 2005], emphasizes the importance of being explicit about cau-
sation in decision making.24 Otherwise, one may make errors, such as confusing, on
the one hand, a correlation of outcomes/utilities and actions with, on the other hand,
outcomes/utilities that are caused by actions. To see why this can be an error, keep
in mind that often one thinks of an agent as independent of the system under control
and actions as exogenous to the system; but this implies that actions can be seen as
interventions.25 (Note that in this simple argument we only refer to actions that are
not influenced by the system. But the argument can be extended to other actions as
well, using soft interventions as introduced in Section 2.1.2.3.) Recently, there has also
been some work that investigates the role of PCMs for (automated) decision making
problems: Bottou et al. [2013], Bareinboim et al. [2015] establish connections between a

can still be based on arguments. A further discussion of this issue is far beyond the scope of this
thesis and we refer the reader to [Kolodny and Brunero, 2016].

24Clearly, decisions should not only be judged in terms of their effects, but sometimes also in terms
of ethical considerations, which may be based more on the motivation than the result Kant et al.
[2002], although both are difficult to discern.

25This is based on personal communication with Michel Besserve.
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standard model of RL – “bandits” – and causal models.

Note that causal models can help for decision making in two ways: On the one hand,
if the decision corresponds to one variable D in a causal model M , then M allows to
predict the outcome of a specific decision (formalized by an intervention on D) as well as
the outcome of a policy for decision making (formalized by a soft intervention on D, see
Section 2.1.2.3). On the other hand, if the decision is about a more general manipulation
of a system modeled by a causal model M , then it can also be seen as an element of the
set of all possible interventions on M , including interventions on several variables.

We do not consider this thesis as a general contribution to causal decision theory. How-
ever, we will show how causal models can help for decision making towards predefined
goals in some specific cases involving complex systems. The basic idea is to first formal-
ize questions that arise in decision making as queries about parts of causal models and
then to study how these parts can be inferred (integratively and approximately).

• In Section 4.5.2, we consider decision making in a toy scenario in advertisement.
Specifically, we inform the decision of whether to send out an advertisement letter
or not by approximately inferring the strength of the causal effect of sending out
such a letter.

• In Section 5.4, we consider decisions about how to manipulate a (cloud) com-
puting system to debug its performance. We show how the outcomes of such
manipulations can be formalized as counterfactual probabilities. We discuss how
these probabilities can approximately be inferred from a given GCM (since FCMs,
which would uniquely determine counterfactual probabilities, often cannot be in-
ferred), and, to some extent, also how the GCM can be inferred. In Section 5.4 we
also discuss automated allocation, i.e., control, of cloud computing resources based
on causal models. We also show how causal models can help to integrate sandbox
experiments for debugging and control decisions.

• Furthermore, in Section 5.5 we cast the outcomes of clients bidding for cloud
computing resources as post-(soft)interventional distributions. We discuss how
such distributions can be inferred approximately and integratively from knowledge
distributed among the clients, potentially helping them in their decision making.
However, we leave strategic considerations based on game theory to future work.
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Note that while we always informally specify goals, we do not always explicitly formalize
them by a utility function. In this sense, we also do not always run through the complete
optimization procedure, but instead we rather show how reasoning based on PCMs can
be one step in rational decision making.

It is worth emphasizing again that we do not claim that PCMs are necessary for the
decision problems we apply them to. For instance, if a decent class or distribution
of global models for past and future observations, conditioned on decisions, is given,
then explicit causal reasoning is not needed, and the inference from observations to
decisions can be done in an “end-to-end” manner. A prominent example of such a
model class is given by “Markov decision processes” [Sutton and Barto, 1998, Barber,
2012]. However, to come up with such (classes or distributions of) global models (or
approximations, see 5.3.2), or to “critically” reason about identifiability of parts of the
model from the available data (which we will briefly do in Section 5.4.3), PCMs can be
helpful. Furthermore, causal models may be of help whenever learning happens but the
precise goal or the possible actions are not specified yet.

2.1.5. Contextualization

Before going into rather technical and mathematical details, of which a majority of this
thesis consists, we want to take a step back and take a broader view on causation by
putting this concept into context with other important concepts, and also by making
some historical remarks.

On the one hand, this contextualization is of value when addressing the problem of
causal inference: to infer causation, it is important to understand how causation “a
priori” relates to other concepts, because any such relation may allow to reason from
non-causal statements, which are potentially easier to infer, to causal statements. On
the other hand, a (historical) contextualization is one of the most powerful standard
methods for systematic reflection upon a topic. (Another powerful method is critical
analysis – weighing the pros and cons, the potentials and limitations – and we will
perform such analysis to a limited extent in Chapter 6. A third “method” may be seen
in asking “why?”-questions, looking for the driving forces – searching for the underlying
causes.)
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We organize the contextualization by several key words. Some relations have already
been touched in previous sections, in particular the ones to manipulation and correlation.
Here we add some more “basic” and historical remarks.

• Manipulation. Our definitions in Section 2.1.2 already indicate the key role of
manipulations for the concept of causation, as these definitions rely on interven-
tions and experimentation. Generally, manipulation relates to causation in two
ways: on the one hand, manipulation of an object helps to infer a causal model of
it; on the other hand, a PCM predicts the outcomes of a special kind of manip-
ulations of an object – interventions.26 The latter direction makes causal models
particularly interesting for decision making, which is often about potential manip-
ulations of some system. We do not want to claim though, that causal models
are necessary whenever outcomes of manipulations need to be predicted: there are
other manipulations than interventions, and generally, there are cases where one
can speak about manipulation without any need to resort to causation.

Historically, the key role of manipulation for causal inference was recognized at
least since Francis Bacon [Spirtes et al., 2000, Section 1.1]. Other important pro-
ponents of the necessity of manipulation are John Stuart Mill [Macleod, 2016],
Donald Rubin and Paul Holland [Holland, 1986]. The growing emphasis on ma-
nipulation needs to be seen in the context of the development of the modern
scientific method. It heavily relies on experimental interaction of the investigator
with the object of interest – repeated, deliberate manipulation and observation –
in contrast to sole deduction of (empirical) insight from first principles.27 As Kant
[1998, BXIII] describes it, in modern science, it is about performing experiments
to force nature to answer the questions that we pose in our language. He gives
the example of Galileo letting a ball whose mass he picked himself roll down an
inclined plane to infer the physical laws governing it.

In this thesis, the relation between manipulation and causation will in particular

26Clearly, the two ways in which “manipulation” relates to “causation” – inference and prediction –
can be seen as two sides of the same coin.

27The growing connection between theory and manipulation of the empirical world may be driven by the
economic development from slaveholder and feudal societies towards market economy [Marx, 2014,
1867, Smith and Recktenwald, 1986]. In a slaveholder society, there were probably less people with
the intellectual education, a connection to practical problems, and incentives as well as a possibility
to apply the former to solve the latter.
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play a role for Chapter 5, where causal models are proposed to inform decisions
about “which knob to turn” to debug a computer system.

• Counterfactuals. When considering causation w.r.t. individual units instead of
populations, then usually one runs into the notion of counterfactual statements
and questions [Pearl, 2000, Imbens and Rubin, 2015], which are closely related to
the “potential outcomes” we touched in Section 2.1.2.3. For instance, one can read
the statement “Taking the aspirin made my headache go away.” by “If I had not
taken the aspirin (that is, if I had intervened on my decision to take the aspirin),
then my headache would not have gone away.”

As most people would agree, the latter statement cannot be verified or falsified in
reality (without making further assumptions [Pearl, 2000]). This is referred to as
the “fundamental problem of causation” [Holland, 1986].

In this work, most of the time we avoid this problem by focusing on causal effects
on the population-level instead of the unit-level, where one can (under appropriate
assumptions) in fact apply treatment as well as control to (samples of) one and
the same population, in case one samples and randomizes properly. In Chapter
5 though, we will interpret debugging questions in computer systems as unit-
level counterfactuals, and answer them (approximately) with the help of PCMs,
assuming, for instance, that the value of the background variables remains invariant
[Pearl, 2000] (see also Remark 5.1).

• Correlation. Causation is closely related to correlation or, more precisely, (sta-
tistical) dependence in various ways. Probably the most well-known assumption
in this direction is the so-called common-cause principle by Reichenbach [1956].
It states that whenever two variables X and Y are dependent, either they have a
common cause, or one causes the other (the latter can be seen as a “degenerate”
special case of the former). Going beyond the “qualitative” level of dependence
towards a “quantitative” level, one may say that the causal structure underlying
a set of variables is closely linked to their observational joint distribution. We
already discussed observational causal inference methods, which are completely
based on this link, in Section 2.1.3.2. In particular, the causal Markov assumption
we introduced there is a generalization of Reichbach’s common-cause principle.
But also the definition of PCMs in general heavily relies on this link, as a PCM
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is a multivariate distribution plus additional information. And within this thesis,
in particular in Chapters 3 and 4, correlations – and observational distributions in
general – will be one of the most important inputs to causal inference, although
they will not be the sole input.

Interestingly, from a superficial view, the notions of causation and correlation
were less well-separated earlier in history. For instance, Hume and Hendel [1955,
chapter VII] states that “we may define a cause to be an object, followed by
another, and where all the objects similar to the first are followed by objects
similar to the second”, which may rather be read as some form of correlation
(or implication) than as intervention-based causation (when neglecting the use of
“object” instead of “event”, which we already commented on in Section 2.1.2.3).
In this sense, the concept of correlation may be seen as a first, easier to define and
infer, approximation to the concept of causation.

So far we were merely talking about the relationship between causation and corre-
lation on a “population level”. It is important to mention though, that statistical
and causal inference face the same fundamental problem – the problem of induc-
tion, that is, drawing conclusions from past to future, from the special case to
the general law, from finite sample to entire population, from the observed to the
hidden– beyond tautologies. This problem was discussed by many philosophers, in
particular Hume and Hendel [1955], who considered this problem especially w.r.t.
causal inference. One of the most interesting “solutions” was given by Kant and
Guyer [1998], who argued that whatever can be perceived and understood about
the future would be perceived and understood by a (human) subject. Based on
this, the problem of induction can – to some extent – be reduced to the prob-
lem of understanding the subject and the “necessary” conditions that enable and
structure perception and insight. This is closely related to Kants view on modern
science we mentioned above.

• Time. It is generally assumed that future does not influence past. Since time is
usually easy to measure, this assumption can be very valuable. In Chapter 3, where
we study causal inference from time series, we will heavily rely on this assumption.
In that chapter we will show that measuring variables over time can also allow to
better remove hidden confounding compared to just having i.i.d. measurements.
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Note that it is not obvious how the assumption could be falsified: how could one
prove an effect from present to past, if one existed? Let Ws, Xt, Yu be variables at
times s < t < u, respectively. In a classical randomized experiment, to infer the
influence of Xt on Yu, one randomizes the treatment variable Xt in order to make
it independent of the past of the universe and thus independent of all potential
factors that also influence the outcome variable Yu. But, when randomizing Xt

in an experiment to determine its effect on Ws, this randomization would by def-
inition always disprove an effect of Xt on the preceding Wu, since otherwise the
randomization would not have been performed properly. So a classical randomized
experiment does not seem appropriate to disprove an effect of Xt on Ws. Instead,
one would have to come up with other forms of experiments. Alternatively, it may
be that there are arguments against effects from future to past which are based on
physics or may even hold true a priori.

• Explanation. The concept of causation is closely related to the concept of ex-
planation. For instance, according to Falcon [2015], Hulswit [2004], Aristoteles
considered causal statements as explanatory answers to questions regarding why
and what an object is.

In this thesis we use the concept of causation in a rather narrow and technical
sense, based on our definitions in terms of PCMs, interventions and randomized
experiments (Section 2.1.2). When moving within this technical sphere, it is not
always obvious, how results contribute to a genuine deeper understanding of the
world. Nonetheless, the distant goal of this thesis is to develop methods that
help to find answers to the important “why?”-questions, and that contribute to
explanations and understanding of the world.

As a side not, generally, it seems an open question how much formal models and
quantitative results contribute to understanding the world. Without a doubt, they
form one step: for instance, one can have some understanding of the world, then
try to translate it into a quantitative hypothesis and then falsify this hypothesis.
But by no means one should confuse the quantitative hypothesis with the under-
standing itself. On the other hand, it may also depend on the individual how
quantitative “understanding” itself is.
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• Modularity. An important concept which PCMs are based on is modularity
[Woodward, 2005]. In a PCM, the causal conditionals can be changed individu-
ally, and assuming modularity means assuming that (1) interventions on the mech-
anisms represented by the causal conditionals, including the soft interventions we
discussed in Section 2.1.2.3, are well defined in reality and (2) the PCM correctly
predicts the outcome of such interventions. That is, modularity means that the
remaining structural equations (in case of an FCM) “not intervened on” form a
valid explanation of the new system, which makes it a fundamental assumption
underlying PCMs. This necessity of modularity for PCM-based causal inference
was a key motivation for Chapter 5: there we perform causal inference in com-
puter systems, which are often modular by design. (A critical stance on modularity
and interventions was taken e.g. by Wiener [1956], who pointed out that we can
never make entirely sure that we performed a proper intervention which did not
accidentally also affect other mechanisms.)

As a side note, causal models are generally inspired by computer science and in
particular (imperative) programming. There, values can be assigned to variables
(which is often denoted by a “=” with asymmetrical interpretation similar to the
“:=” in structural equations), or, on a physical level, loaded into memory. This
entails the metaphor of considering “influence” as “assignment”.

• What else? Causation is also linked to the spatial arrangement of variables and
events, as emphasized, e.g., by Hume and Hendel [1955]. It seems that this relation
is rarely harnessed for causal inference so far. More recent investigations also look
at how causation is related to fundamental concepts from physics, such as entropy
[Janzing et al., 2016].

Certain usages of “causation” can be seen as an “anthropomorphic” world-view.
Take, for instance, Aristoteles who considered one type28 of cause to be the “ef-
ficient” cause, by which he meant the “the primary source of the change”, or the
“thing responsible” Falcon [2015], Hulswit [2004]. This indicates a world-view
where even lifeless entities are some sort of “agents” that “act” upon other en-
tities. But anthropomorphic phrases like “the moon pulls water toward it, and

28In total, Aristoteles considered four types of causes – “material”, “formal”, “efficient” and “final”
cause. We already mentioned the “material” one in Section 2.1.2.3. For a further discussion, in
particular of the remaining types, we refer the reader to Falcon [2015], Hulswit [2004].
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this causes the bulge toward the moon” [HowStuffWorks.com, 2009], to explain
the mechanisms underlying low and high tide, are completely common still to-
day. As Hulswit [2004] points out, it is only since about the seventeenth century
that cause-effect relations are – besides the “anthropomorphic” usage still common
today – considered as some sort of “lifeless” laws which one aims to infer.

It is also interesting to look at the role of the measuring and intervening subject
in causal models. If it is possible at all to identify a trend in science, then one
such trend could be seen in the growing importance to model the investigating
subject: while it did not play a significant role in Newtonian mechanics, it became
important in relativity theory (in the sense of a passive observer) and in quantum
mechanics (in the sense of the decision maker w.r.t. measurements). Maybe causal
models, based on the notion of an intervention, can be seen as part of this trend.

2.2. Overview: outline and contributions

Here, we will first provide summaries for all remaining chapters, in Section 2.2.1. Then
we will discuss the main contributions of this thesis and the parts that are due to
the author of this thesis, in Sections 2.2.2 and 2.2.3, respectively. Last, we list the
publications this thesis is based on in Section 2.2.4.

2.2.1. Outline

In short, this thesis studies (1) approximative and integrative inference of causal models,
and (2) causal models as a basis for decision making in complex systems. We repeat the
schematic illustration of this work from Chapter 1 in Figure 2.5. The focus of Chapters
3 and 4 is on topic (1), the focus of Chapter 5 is on topic (2). However, Chapters 4 and
5 also contain some elements of the respective other topic.

Often, when treating topic (2) we assume more high-level information, such as a GCM, as
given, and start reasoning from there; compared to our investigation of topic (1), which
naturally starts from rather low-level information, such as measurements and temporal
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decisioncausal modelsystem itself/
prior knowledge

Chapter 3:
Chapter 4:
Chapter 5:

Figure 2.5.: Illustration of the structure of the remainder of this thesis. We study
fragments of the “inference path” that starts at a given system and information about
it and goes via causal models towards the goal of an informed decision (concerning
the system), depicted in red along the x-axis. The focus of the respective chapter is
depicted by a solid black line, while topics that are briefly touched are depicted by a
shorter dashed line.

annotation. Recall that we presented background for topic (1) in Section 2.1.3, and for
topic (2) in Section 2.1.4.

Now we give a short summary for each individual chapter:

• Chapter 3: Causal inference from time series with hidden confounders.

– Problem: Here we study the problem of inferring a causal model of a dynami-
cal system, which is central to areas ranging from economics to neuroscience.

– Integrating: We consider a (subsample of a) time series X = (Xt)t∈Z as
given, i.e., we integrate measurements as well as knowledge of their temporal
ordering.

– Approach: We assume that X together with some hidden confounder Z =
(Zt)t∈Z forms a first order vector autoregressive (VAR) process with struc-
tural transition matrix A (we give an example of a corresponding causal DAG
in Figure 2.6). Then we examine under which conditions the most important
parts of A are identifiable or approximately identifiable from only X. Essen-
tially, sufficient conditions are (1) non-Gaussian, independent noise or (2) no
influence from X to Z. We present two estimation algorithms that are tailored
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Figure 2.6.: Example causal DAG with bivariate observed time series X = (Xt)t∈Z
and univariate hidden confounder time series Z = (Zt)t∈Z, induced by a (structural)
transition matrix A. Influences within X are red, confounding by the hidden Z is in
blue, and the remaining influences are in black. In Chapter 3, the goal is to infer (parts
of the) causal model of such structures, in spite of Z being hidden, under the assumption
of linearity. Knowing the temporal ordering means knowing the causal ordering, up to
instantaneous effects, but the problem of hidden confounding remains.

YX

Z

Figure 2.7.: The causal DAG that we assume in Chapter 4. The goal is to infer the effect
of X on Y . We assume to know that X causally precedes Y , but the problem of hidden
confounding remains.

towards conditions (1) and (2), respectively, and evaluate them on synthetic
and real-world data. We present a way to check the model assumptions using
only X.

• Chapter 4: Approximate causal inference by bounding confounding in
i.i.d. settings.

– Problem: The overall goal is to infer the causal effect of a treatment variable
X on an outcome variable Y in i.i.d. (i.e., non-time-series) settings. In one
example (Section 4.5.2) we aim at informed decision making in advertisement,
where X denotes the action of sending out an advertisement letter or not.

– Integrating: We assume the joint distribution of X, Y as given. We assume
to know that Y does not influence X (i.e., we assume the causal DAG in
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Figure 2.7). Besides that, we assume various forms of additional knowledge
to be given that imply bounds on the strength of a potential hidden common
cause Z of X and Y . For instance, in the advertisement example, we consider
partial compliance with guidelines.

– Approach: Our approach is to first derive approximations (upper/lower bounds)
for the causal effect, in dependence on bounds on the strength of confound-
ing we assume as given. The approximations are derived w.r.t. a range of
formalizations of “causal effect”, including P (Y |doX=x), but also quanti-
ties such as the effect of treatment on the treated (ETT) and information
theoretic quantities like information flow and causal strength. Then we dis-
cuss several scenarios where knowledge or beliefs can be integrated that in
fact imply bounds on the strength of confounding, including the mentioned
advertisement example.

• Chapter 5: Decision making in cloud computing via approximate causal
models.

– Problem: We consider two decision making problems that arise in cloud com-
puting: (1) debugging and control of computing systems, and (2) bidding for
“spot” resources versus buying “dedicated” resources.

– Integrating: For problem (1) we integrate expert knowledge, non-causal as-
sociational information (e.g., program code), and sandbox experiments. For
problem (2) we propose to integrate knowledge of the causal DAG, and par-
tial knowledge of the conditional probabilities, distributed among the parties
involved.

– Approach: We formalize debugging by counterfactual probabilities and con-
trol by post-(soft-)interventional probabilities. We show that counterfactuals
can approximately be calculated from a GCM (while they are originally de-
fined only for FCMs), and based on this sketch an approach which integrates
sandbox expeiments and can potentially help to address problem (1). To
address problem (2), we formalize bidding by post-(soft-)interventional prob-
abilities. We show how, in a toy scenario, cloud clients can trade off privacy
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against predictability of the outcome of their buying and bidding actions,
based on a simple result on approximate integration of conditionals.

2.2.2. Main contributions of this thesis

While discussing contributions in more detail in the respective chapters, here we pick
and summarize the main contributions of this thesis, structured by chapter. We do not
distinguish between contributions by the author of this thesis and collaborators here,
but we will do so in Section 2.2.3. Besides being ordered along the “inference path” from
learning to decision making which we illustrated in 2.5 on page 48, the main contributions
of this thesis can also be seen as going from parts that are rather based on “exploiting”
beaten tracks in terms of problem formulations and frameworks, to parts that are more
“explorative” in that they try to push the boundaries of established frameworks towards
relevant directions.

• Chapter 3: Causal inference from time series with hidden confounders.
In causal learning from time series, the causal ordering implied by the temporal or-
dering significantly facilitates inference, but potential hidden confounding remains
a major problem. Theorems 3.1 through 3.3 constitute an extensive analysis of
this problem for the case of vector autoregressive (VAR) processes, which are a
model frequently assumed in time series analysis [Lütkepohl, 2006]. We show that,
under rather weak additional assumptions, hidden confounding can perfectly or ap-
proximately be removed, and even the “location” of confounders can be inferred.
Furthermore, in Propositions 3.1 and 3.2, we prove the genericity of parts of our
assumptions in a way that may be transferable to other situations.

Theorem 3.1 can be interpreted as showing that the integration of time can –
besides giving a causal ordering – also help to remove hidden confounding, as
(essentially) the analogous assumptions made in i.i.d. settings only lead to a sig-
nificantly weaker identifiability result [Hoyer et al., 2008].

In Algorithms 1 and 2, we present concrete causal inference methods for time
series data, tailored to the conditions in Theorems 3.1 through 3.3 that imply
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(approximate) identifiability. We validate the algorithms on synthetic data, and
show potentials and limitations of the first one on real data.

• Chapter 4: Approximate causal inference by bounding confounding in
i.i.d. settings. Some causal inference methods under the title “quasi-experiments”
(Section 4.2) go beyond perfectly randomized experiments, but so far only “islands”
in this “continuum” between randomized experiments and observational studies are
discovered. With Theorems 4.1 through 4.7, we contribute to the systematic study
of this continuum. We show for a wide range of established measures of causal
effect, ranging from information theoretic quantities to the effect of treatment on
the treated (ETT), how they can be approximated given bounds on confounding.

While finding real settings that imply bounds on confounding remains a challenge,
for instance in Section 4.5.2, using Proposition 4.1, we show for a simplistic decision
making scenario how knowledge about circumstances such as partial compliance
with guidelines can be integrated to come up with bounds on confounding.

It seems that often, aiming for approximative causal inference is more realistic
than aiming for unique identification, and this chapter particularly contributes to
the advancement of such approximative methods.

• Chapter 5: Decision making in cloud computing via approximate causal
models. In Section 5.4.2, we propose potential first steps of a principled ap-
proach for sandbox experiment, debugging and control in cloud computing based
on causal models, which can help to overcome problems of previous methods that
do not handle causation explicitly (Section 5.4.3). In particular, we show how de-
bugging questions, which are central in computer systems, can be translated into
counterfactual probabilities in Section 5.4.2.4. In Proposition 5.1 we show how –
theoretically – such counterfactual probabilities can approximately be derived from
a GCM only, which was not known before. This proposition may be of importance
beyond cloud computing, as it is rarely the case that FCMs, which are completely
deterministic, can be inferred.

In Section 5.5.2 we show how, in a toy setting, knowledge distributed among the
parties involved in cloud computing can be integrated to improve bidding and
allocation decisions, with the possibility to trade of prediction accuracy against
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privacy. The method is based on Proposition 5.2, which indicates how in this
setting and beyond, distributed knowledge in the form of marginal distributions
can be integrated towards an approximate global model.

It needs to be emphasized that the practical value of the two propositions and our
formalizations of the mentioned problems remains to be established. They should
be seen as a thought-provoking impulse rather than a completed contribution.

2.2.3. Contributions by the author of this thesis

In what follows, the contributions that are due to the author of this thesis are listed,
structured by chapters again:

• Chapter 3: Causal inference from time series with hidden confounders.

– The precise formulations of all lemmas, propositions and theorems are due
to the author of this thesis. Using the identifiability result underlying over-
complete ICA [Kagan et al., 1973, Theorem 10.3.1] to subtract out hidden
confounding – as was done in the proof of Theorem 3.1 – was suggested by
Kun Zhang. The idea to heavily exploit the properties of polynomials to
prove the genericity statements in Propositions 3.1 and 3.2 was suggested by
Dominik Janzing. Other than that, all parts of the proofs for this chapter are
due to the author of this thesis.

– Algorithm 1;

– and the simultaneous treatment of Granger causal inference and inference
based on PCMs, are due to the author of this thesis.

• Chapter 4: Approximate causal inference by bounding confounding in
i.i.d. settings.

– The formulation and proofs of Theorems 4.4, 4.6 and 4.7;

– and parts of the ideas for the various prototypical application scenarios and
mathematical deviations in Section 4.5 are due to the author of this thesis,
while other parts were contributed by Dominik Janzing.
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• Chapter 5: Decision making in cloud computing via approximate causal
models.

– The formulation and proofs of the mathematical results, Propositions 5.1 and
5.2 are due to the author of this thesis.

– The general idea to apply PCMs to problems in cloud computing was devel-
oped by the author of this thesis, together with Lucian Carata.

– The application of machine learning algorithms to experimental data (the
experiment itself was performed by Lucian Carata) is due to the author of
this thesis.

2.2.4. Underlying publications

This thesis is build upon several publications/preprints. They are listed, together with
their appearances, in Table 2.1.
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Table 2.1.: Publications/preprints this thesis is builds on, and where they appear.

Publication Used in
P. Geiger, K. Zhang, M. Gong, D. Janzing, and B. Schölkopf. Causal
inference by identification of vector autoregressive processes with hid-
den components. In Proceedings of 32th International Conference on
Machine Learning (ICML 2015), 2015b [Geiger et al., 2015b]

Chapter 3

P. Geiger, D. Janzing, and B. Schölkopf. Estimating causal effects
by bounding confounding. In Proceedings of the 30th Conference on
Uncertainty in Artificial Intelligence, pages 240–249, 2014 [Geiger et al.,
2014]

Chapter 4,
Appendix B

P. Geiger, L. Carata, and B. Schölkopf. Causal inference for cloud com-
puting. arXiv preprint arXiv:1603.01581, 2016b [Geiger et al., 2016b];
P. Geiger, L. Carata, and B. Schoelkopf. Causal models for debug-
ging and control in cloud computing. arXiv preprint arXiv:1603.01581,
2016a [Geiger et al., 2016a]

Chapter 5,
Appendix C

P. Geiger, K. Zhang, M. Gong, D. Janzing, and B. Schölkopf. Causal
inference by identification of vector autoregressive processes with hid-
den components. arXiv preprint arXiv:1411.3972, 2015a [Geiger et al.,
2015a]

Appendix A
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Chapter 3.

Causal inference from time series with
hidden confounders

3.1. Introduction

This is the first of two chapters that focus on integrative and approximative causal in-
ference, as indicated in Section 2.2.1 and depicted in Figure 3.1 on page 57. Specifically,
in this chapter we focus on causal inference from time series, which, besides measure-
ments, also integrates the temporal ordering of these measurements. Time series data
being so cheap to obtain in many situations, it is surprising how valuable it is for causal
inference. Its value is based on the common notion that the future does not influence the
past and therefore a temporal ordering of the measurements is also a causal ordering,
up to instantaneous effects (our model assumptions will be further detailed in Section
3.4.2).

Causal inference from time series has been performed in many areas such as neuroscience
[Roebroeck et al., 2005]. But it is particularly relevant for economics [Lütkepohl, 2006],
as causal models are more informative for decision making than purely correlational ones
(Section 2.1.4), and a lot of data in economics naturally comes as time series, such as
yearly gross domestic product (GDP). Maybe the most widely applied method is so-
called Granger causal inference, proposed and argued for by Granger [1969]. The way
Granger causal inference is usually implemented has a significant weakness: it does not
account for potential hidden confounders, as will be further detailed in Sections 3.4.2
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Figure 3.1.: The content of this chapter illustrated in black, relative to the rest of this
thesis in gray, and the overall “inference path” in red.

and 3.4.3. We will use the framework of PCMs to analyze this weakness and to come
up with ways around it. But while we will see that the problem of hidden confounding
can be somewhat weakened when considering time series instead of i.i.d. data, it cannot
be fully solved – a reason why we also put a focus on approximative methods which do
not aim to uniquely identifying the correct causal model.

Parts of this chapter are based on the publication [Geiger et al., 2015b].

3.1.1. Problem statement

We assume we are given a multivariate time series sample

x1:L =


x1

1
...

xKX
1

 , . . . ,


x1
L
...

xKX
L

 ,

where KX is the dimension of xt, t = 1, . . . , L. The overall goal is to infer the causal
structure underlying x1:L, that is, to infer how the observable underlying xkt influences
the observable underlying xlt+s, for any k, l, t, s. The more specific goal is to understand,
to what extent – under what assumptions – and how – with which estimation algorithms
– the causal structure can be inferred from the sample.
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3.1.2. Outline of our approach

In the language of FCMs our approach can be described as follows. (For an alternative
justification, based on Granger’s theory, see Section 3.4.2.) We assume that x1:L is a
finite sample of a multivariate random process X = (Xt)t∈Z which, together with another
multivariate random process Z = (Zt)t∈Z, obeys the structural equations

 Xt

Zt

 :=
 B C

D E

 Xt−1

Zt−1

+Nt,

for all t ∈ Z, some matrices B,C,D,E, and some i.i.d. Ni, i ∈ Z.

The first stage of our investigation, Section 3.6, is on the theoretical side: we present
several results that show under which conditions B and C are identifiable or approxi-
mately (i.e., up to a small number of possibilities) identifiable from only the distribution
of X. Generally we assume that Z has at most as many components as X. Theorem
3.1 shows that if the noise terms are non-Gaussian and independent, and an additional
genericity assumption holds true, then B is uniquely identifiable. This indicates that
temporal knowledge – besides giving a causal ordering – also allows to better remove
hidden confounders compared to just having i.i.d. measurements. Theorem 3.2 states
that under the same assumption, those columns of C that have at least two non-zero
entries are identifiable up to scaling and permutation indeterminacies (because scale and
ordering of the components of Z are arbitrary). Theorem 3.3 shows that regardless of
the noise distribution (i.e., also in the case of Gaussian noise), if there is no influence
from X to Z and an additional genericity assumption holds, then B is identifiable from
the covariance structure of X up to a small finite number of possibilities. In Propositions
3.1 and 3.2 we prove that the additional assumptions we just called generic do in fact
only exclude a Lebesgue null set from the parameter space.

The second stage of our investigation, Section 3.7, is a first examination of how the above
identifiability results can be translated into estimation algorithms operating on the finite
sample x1:L of X. We propose two algorithms. Algorithm 1, which is tailored towards the
conditions of Theorems 3.1 and 3.2, estimates B and C by approximately maximizing the
likelihood of a parametric VAR model with a mixture of Gaussians as noise distribution.
Algorithm 2, which is tailored towards the conditions of Theorem 3.3, estimates the
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matrix B up to finitely many possibilities by solving a system of equations somewhat
similar to the Yule-Walker equations [Lütkepohl, 2006]. Furthermore, we briefly examine
how the model assumptions that we make can to some extent be checked just based on
the observed sample of X. We examine the behavior of the two proposed algorithms on
synthetic and real-world data.

Theorem 3.2, Theorem 3.3 as well as Algorithm 2 (and in a broader sense also Algorithm
1) can be seen as part of approximate causal inference, as defined Section 2.1.3.3, as they
outline methods which cannot uniquely identify the correct causal model, just constrain
the set of possible causal models.

3.1.3. Structure of this chapter

The remainder of this chapter is organized as follows:

• In Section 3.2 we discuss related work.

• In Section 3.3 we introduce notation and definitions for time series.

• In Section 3.4 we state the statistical and causal model that we assume throughout
this chapter.

• In Section 3.5 we introduce the so-called generalized residual.

• Section 3.8 contains experiments for Algorithms 1 and 2.

• We conclude with Section 3.9.

3.2. Related Work

We discuss how the present chapter is related to previous work in similar directions.
Generally it can be said, that time series with hidden confounders is a topic in causal
inference, which, in spite of its relevance, has received rather little attention in the
research community.
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Granger causality: Probably the most widely applied approach to causal inference
from time series data so far, which we refer to as practical Granger causal analysis (or
inference) in this chapter (often just called “(linear) Granger causality”), is to simply
perform a linear regression of Xt on Xt−1, based on the observed sample of X, and then
interpret the regression matrix causally [Granger, 1969, Lütkepohl, 2006] (sometimes lags
of length more than 1 are used as well). While this method may yield reasonable results
in certain cases, it obviously can go wrong in others (see Section 3.4.3 for details). We
believe that our approach may in certain cases lead to more valid causal conclusions.

Inference of properties of processes with hidden components: Jalali and Sang-
havi [2012] also assume a VAR model with hidden components and try to identify parts
of the transition matrix. However, their results are based on different assumptions:
they assume a “local-global structure”, i.e., connections between observed components
are sparse and each latent series interacts with many observed components, to achieve
identifiability. Boyen et al. [1999] - similar to us - apply a method based on expectation
maximization (EM) to infer properties of partially observed Markov processes. Unlike
us, they consider finite-state Markov processes and do not provide a theoretical analysis
of conditions for identifiability. [Etesami et al., 2012] examine identifiability of partially
observed processes that have a certain tree-structure, using so-called discrepancy mea-
sures. Gong et al. [2015] use similar assumptions as we do here to cope with a different
type of hidden confounding in time series: the one that arises from subsampling. Entner
and Hoyer [2010] transfer conditional-independence-based observational causal inference
methods (see Section 2.1.3.2), that allow for hidden confounders, from the i.i.d. setting
to the time series setting. Their method generally cannot identify the influence structure
within the observed X when there are hidden confounders, while one of ours (based on
Theorem 3.1) can. But this is due to their assumptions being much weaker, which makes
their method applicable more broadly than ours.

Harnessing non-Gaussian noise for causal inference: Probably the most impor-
tant work that uses the assumption of non-Gaussian noise for causal inference is by
Shimizu et al. [2006], which considers only the a-temporal setting and does not address
hidden confounders. Hyvaerinen et al. [2010] use non-Gaussian noise to infer instanta-
neous effects. Hoyer et al. [2008] use the theory underlying overcomplete independent
component analysis (ICA) Kagan et al. [1973, Theorem 10.3.1] to derive identifiability
– up to finitely many possibilities – of linear models with hidden variables, which is
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somewhat similar to our Theorem 3.1. However, there are two major differences: First,
they only consider models which consist of finitely many observables which are mixtures
of finitely many noise variables. Therefore their results are not directly applicable to
VAR models. Second, they show identifiability only up to a finite number of possibili-
ties, while we (exploiting the autoregressive structure) prove unique identifiability. This
can be interpreted as indicating, that temporal knowledge can even help for removing
confounders.

Integrating several definitions of causation: Eichler [2012] provides an overview
over various definitions of causation w.r.t. time series, somewhat similar to, but more
comprehensive than our brief discussion in Sections 3.4.2 and 3.4.3.

3.3. Preliminaries: definitions and notation of time
series

Here we introduce notation and definitions w.r.t. time series. We denote multivariate
time series, i.e., families of random vectors over the index set Z, by upper case letters such
as X. As usual, Xt denotes the t-th member of X, and Xk

t denotes the k-th component
of the random vector Xt. Slightly overloading terminology, we call the univariate time
series Xk = (Xk

t )t∈Z the k-th component of X. By PX we denote the distribution of the
random process X, i.e., the joint distribution of all Xt, t ∈ Z.

Given a KX-variate time series X and a KZ-variate time series Z, (X,Z)> denotes the
(KX +KZ)-variate series

(
(X1

t , . . . , X
KX
t , Z1

t , . . . , Z
KZ
t )>

)
t∈Z

.

A K-variate time series W is a vector autoregressive process (of order 1), or VAR process
for short, with VAR transition matrix A and noise covariance matrix Σ, if it allows a
VAR representation, i.e.,

Wt = AWt−1 +Nt, (3.1)
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the absolute value of all eigenvalues of A is less than1 1, and N is an i.i.d. noise time series
such that cov(N0) = Σ. We say W is a diagonal-structural VAR process if in the above
definition the additional condition is met that N1

0 , . . . , N
K
0 are jointly independent.2

3.4. Model assumptions

The question of inferability of the causal structure underlying the given sample x1:L can
be reduced to the question of identifiability of parameters of the statistical model for
x1:L. Therefore, in this section we first introduce the statistical model that we consider
throughout this chapter. Then we discuss in some detail why the reduction is valid.
Last, we demonstrate, based on the model, how practical Granger causal inference can
go wrong.

Note that maybe our strongest assumption is that of linearity and it is left to future
work to what extent the results in this work can be extended to nonlinear settings.

3.4.1. Statistical model

Let KX be arbitrary but fixed and let X be a KX-variate time series. As stated in
Section 3.1, X is the random process from which we assume we measured the given
finite sample x1:L. In particular, the random variables in X have a meaning in reality
(e.g., X1

3 is the temperature measured in room 1 at time 3) and we are interested in the
causal relations between these variables. Let X be related to a K-variate VAR process
W , with transition matrix A, noise time series N , and noise covariance matrix Σ, and a
KZ-variate time series Z, as follows: W = (X,Z)> and KZ ≤ KX . Furthermore, let

A =:
 B C

D E

 , (3.2)

1We require all VAR processes to be stable [Lütkepohl, 2006].
2Note that the notion “diagonal-structural” is a special case of the more general notion of “structural”

in, e.g., [Lütkepohl, 2006].
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Figure 3.2.: Example of a causal DAG for a bivariate observed time series X = (Xt)t∈Z
and univariate hidden confounder time series Z = (Zt)t∈Z that could be induced by the
(structural) transition matrix A in Equation 3.1. Keep in mind Equation 3.2. Non-zero
entries of B correspond to red arrows, non-zero entries of C correspond to blue arrows,
and the remaining non-zero entries correspond to black arrows.

with B a KX × KX matrix. We call B, the most interesting part of A, the structural
matrix underlying X, as we will argue below that it captures the influences between
the components of X. Furthermore, in case C 6= 0, we call Z a hidden confounder.
(Although, rigorously speaking, if C 6= 0 but D is such that no Zi

s influences more than
one Xj

t , then no variable in Z would be a proper confounder according to Definition
2.5.)

3.4.2. Underlying causal model

Throughout this chapter we assume that there is an underlying system such that all
variables in W correspond to actual properties of that system which are in principle
measurable and intervenable. While we assume that a finite part of X, namely X1:L,
was in fact measured (Section 3.4.1), Z is completely unmeasured. Furthermore we
assume that the entries of A, in particular the submatrix B, capture the actual non-
instantaneous causal influences between the variables in W . This latter assumption can
be justified using FCMs, and we will present this justification below, but it can also be
justified using an argument by Granger [1969], which we will present afterwards.

Let us assume that W forms a causally sufficient set of variables. Furthermore, let us
assume that there are no influences from present to present or present to past. Addi-
tionally, assume linearity and that influences are not beyond one time step. Together,
this means we assume a FCM given by the VAR equations (3.1), with causes being on

63



Chapter 3. Causal inference from time series with hidden confounders

the r.h.s. and effects on the l.h.s.3 (In particular, these equations induce the correct
(temporal) causal DAG for (X,Z)>, for which we give an example in Figure 3.2.) But
this means that A does in fact capture the actual non-instantaneous causal influences
between the variables in W .4 This is one way to justify our approach (in case the
requirement KZ ≤ KX and the other assumptions are met).

On the one hand, Granger [1969] proposed a definition of causation between observables
which we will refer to as Granger’s ideal definition. Assume the statistical model for
the observed sample of X specified in Section 3.4.1. If we additionally assume that Z
correctly models the whole rest of the universe or the “relevant” subpart of it, then
according to Granger’s ideal definition the non-instantaneous (direct) causal influences
between the components of X are precisely given by the entries of B. But this implies
that everything about B that we can infer from X can be interpreted causally, if one
accepts Granger’s ideal definition and the additional assumptions that are necessary
(such as KZ ≤ KX , which in fact may be a quite strong assumption of course). This is
the other way to justify our approach.

3.4.3. How practical Granger causal inference can go wrong

The above ideal definition of causation by Granger (Section 3.4.2) needs to be contrasted
with what we introduced as “practical Granger causal analysis” in Section 3.1. In prac-
tical Granger causal analysis, one just performs a linear regression of present on past on
the observed X and then interprets the regression matrix causally.5 (Often, a statistical
test is applied for the null hypothesis that the respective entries in the regression matrix
are 0 [Lütkepohl, 2006].) While making the ideal definition practically feasible, this may
lead to wrong causal conclusions in the sense that it does not comply with the causal

3Note that here we ignore the fact that Pearl [2000] generally only considers models with finitely many
variables while the process W is a family of infinitely many (real-valued) variables.

4It may be more meaningful to say that A captures the actual influences to the extent it is identifiable
from what we are given. For simplicity we chose the other formulation though.

5We are aware that nonlinear models Chu and Glymour [2008] and nonparametric estimators Schreiber
[2000a] have been used to find temporal causal relations. In this chapter we focus on the linear case.
Also note that practical Granger causal inference is often also used with lag length higher than 1,
while here we restrict to VAR processes of order 1.
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structure that we would infer given we had more information.6

Let us give an example for this:

Example 3.1. Let X be bivariate and Z be univariate. Moreover, assume

A =


0.9 0 0.5
0.1 0.1 0.8
0 0 0.9

 ,

and let the covariance matrix of Nt be the identity matrix. To perform practical Granger
causal analysis, we proceed as usual: we fit a VAR model on only X, in particular
compute, w.l.o.g. assuming zero mean, the transition matrix by

BpG := E(XtX
>
t−1)E(XtX

>
t )−1 =

 0.89 0.35
0.08 0.65

 (3.3)

(up to rounding) and interpret the coefficients of BpG as causal influences. Although,
based on A, X2

t does in fact not influence X1
t+1, BpG suggests that there is a strong

causal effect X2
t → X1

t+1 with the strength 0.35. It is even stronger than the relation
X1
t → X2

t+1, which actually exists in the complete model with the strength 0.1.

3.5. The Generalized Residual: Definition and
Properties

In this section we define the generalized residual and discuss some of its properties.
The generalized residual is used in the proofs of the three main results of this chapter,
Theorems 3.1 to 3.3.

For any KX ×KX matrices U1, U2 let

Rt(U1, U2) := Xt − U1Xt−1 − U2Xt−2.

6Obviously, if one is willing to assume that X is causally sufficient already, then the practical Granger
causation can be justified along the lines of Section 3.4.2. For a more detailed discussion, we refer
the reader to [Peters et al., 2017, Chapter 10].
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We call this family of random vectors generalized residual. Furthermore let

M1 := E
[
Wt · (X>t , X>t−1)

]
.

In what follows, we list some simple properties of the generalized residual. Proofs can
be found in Section A.1.

Lemma 3.1. We have

Rt(U1, U2) = (B2 + CD − U1B − U2)Xt−2

+ (BC + CE − U1C)Zt−2

+ (B − U1)NX
t−1 + CNZ

t−1 +NX
t , (3.4)

if K > KX . In case K = KX , the same equation holds except that one sets C := D :=
E := 0.

Lemma 3.2. If (U1, U2) satisfies the equation

(U1, U2)
 B C

I 0

 =
(
B2 + CD,BC + CE

)
, (3.5)

where I denotes the identity matrix, then Rt(U1, U2) is independent of (Xt−2−j)∞j=0, and
in particular, for j ≥ 0,

cov(Rt(U1, U2), Xt−2−j) = 0. (3.6)

Let ΓXi := cov(Xt, Xt−i) for all i. That is, ΓXi are the autocovariance matrices of X. Note
that Equation (3.6), for j = 0, 1, can equivalently be written as the single equation

(U1, U2)
 ΓX1 ΓX2

ΓX0 ΓX1

 =
(
ΓX2 ,ΓX3

)
. (3.7)

Keep in mind that, as usual, we say a m×n matrix has full rank if its (row and column)
rank equals min{m,n}.
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Lemma 3.3. Let M1 have full rank. If (U1, U2) satisfies Equation (3.6) for j = 0, 1,
then it satisfies Equation (3.5).

Lemma 3.4. If K = KX or if C has full rank, then there exists (U1, U2) that satisfies
Equation (3.5).

3.6. Theorems on identifiability and almost identifiability

This section contains the main results of the present chapter. We present three theo-
rems on unique and approximate identifiability of B and C (defined in Section 3.4.1),
respectively, given X, and briefly argue why certain assumptions we have to make can
be considered as generic. Recall the definition of the matrix M1 in Section 3.5. Note
that the following results show (approximate) identifiability of B for all numbers KZ of
hidden components simultaneously, as long as 0 ≤ KZ ≤ KX (which contains the case
of no hidden components as a special case).

3.6.1. Assuming non-Gaussian, independent noise

We will need the following assumptions for the theorems.

Assumptions. We define the following abbreviations for the respective subsequent as-
sumptions.

A1: All noise terms Nk
t , k = 1, . . . , K, t ∈ Z, are non-Gaussian.

A2: W is a diagonal-structural VAR process (as defined in Section 3.3).

G1: C (if it is defined, i.e., if K > KX) and M1 have full rank.

(We will discuss the genericity of G1 in Section 3.6.3.)

The following definition of F1 is not necessary for an intuitive understanding, but is
needed for a precise formulation of the subsequent identifiability statements. Let F1

denote the set of all K ′-variate VAR processes W ′ with KX ≤ K ′ ≤ 2KX (i.e. W
has at most as many hidden components as observed ones), which satisfy the following
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properties w.r.t. N ′, C ′,M ′
1 (defined similarly to N,C,M1 in Section 3.4): assumptions

A1, A2 and G1 applied to N ′, C ′,M ′
1 (instead of N,C,M1) hold true.

Theorem 3.1. If assumptions A1, A2 and G1 hold true, then B is uniquely identifiable
from only PX .

That is: There is a map f such that for each W ′ ∈ F1, and X ′ defined as the first KX

components of W ′, f(PX′) = B′ iff B′ is the structural matrix underlying X ′.

A detailed proof can be found in Section A.2.1. The idea is to chose U1, U2 such
that Rt(U1, U2) is a linear mixture of only finitely many noise terms, which is possi-
ble based on Lemmas 3.1 to 3.4. Then, using the identifiability result underlying over-
complete ICA [Kagan et al., 1973, Theorem 10.3.1], the structure of the mixing matrix
of (Rt(U1, U2), Rt−1(U1, U2))> allows to uniquely determine B from it. Note that this
is the only result on unique identifiability, while the next two results only guarantee
approximate identifiability.

Again using [Kagan et al., 1973, Theorem 10.3.1], one can also show the following result.
For a matrix M let S(M) denote the set of those columns of M that have at least two
non-zero entries, and if M is not defined, let S(M) denote the empty set. A proof can
be found in Section A.2.2.

Theorem 3.2. If assumptions A1, A2 and G1 hold true, then the set of columns of
C with at least two non-zero entries is identifiable from only PX up to scaling of those
columns.

In other words: There is a map f such that for each W ′ ∈ F1 with K ′ components, X ′

defined as the first KX components of W ′, and C ′ defined as the upper right KX× (K ′−
KX) submatrix of the transition matrix of W ′, f(PX′) coincides with S(C ′) up to scaling
of its elements.

3.6.2. Assuming no influence from observed to hidden components

In this section we present a theorem on the approximate identifiability of B under
different assumptions. In particular, we drop the non-Gaussianity assumption. Instead,
we make the assumption that Z is not influenced by X, i.e., D = 0.
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Given U = (U1, U2), let

TU(Q) := Q2 − U1Q− U2, (3.8)

for all square matrices Q that have the same dimension as U1. Slightly overloading
notation, we let TU(α) := TU(α I) for all scalars α. Note that det(TU(α)) is a univariate
polynomial in α.

We will need the following assumptions for the theorem.

Assumptions. We define the following abbreviations for the respective subsequent as-
sumptions.

A3: D = 0.

G2: The transition matrix A is such that there exists U = (U1, U2) such that Equation
(3.5) is satisfied and det(TU(α)) has 2KX distinct roots.

(We will discuss the genericity of G2 in Section 3.6.3.)

The following definition of F2 is not necessary for an intuitive understanding, but is
needed for a precise formulation of the subsequent identifiability statement. Let F2

denote the set of all K ′-variate VAR processes W ′ with KX ≤ K ′ ≤ 2KX , which satisfy
the following properties w.r.t. N ′, A′, C ′, D′,M ′

1 (defined similarly to N,A,C,D,M1

in Section 3.4): assumptions A3, G1 and G2 applied to N ′, A′, C ′, D′,M ′
1 (instead of

N,A,C,D,M1) hold true.

Theorem 3.3. If assumptions A3, G1 and G2 hold true, then B is identifiable from
only the covariance structure of X up to

(
2KX

KX

)
possibilities.

In other words: There is a map f such that for each W ′ ∈ F2, and X ′ defined as the first
KX components of W ′, f(X ′) is a set of at most

(
2KX

KX

)
many matrices, and B′ ∈ f(PX′)

for B′ the structural matrix underlying X ′.

A detailed proof can be found in Section A.2.3. The proof idea is the following: Let L
denote the set of all (U, B̃), with U = (U1, U2), that satisfy Equation (3.6) for j = 0, 1,
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as well as the equation

TU(B̃) = 0, (3.9)

and meet the condition that det(TU(α)) has 2KX distinct roots. L is non-empty and
(U,B) is an element of it, for the true B and some U , due to Lemmas 3.2 to 3.4. But L
is only defined based on the covariance of X and has at most

(
2KX

KX

)
elements (based on

[J. E. Dennis et al., 1976]).

Note the similarity between Equation (3.6), or its equivalent, Equation (3.7), and the
well-known Yule-Walker equation [Lütkepohl, 2006]. The Yule-Walker Equation (which
is implicitly used in Equation (3.3)) determines B uniquely under some genericity as-
sumption and given C = 0.

3.6.3. Discussion of the genericity assumptions

In this section we want to briefly argue why the assumptions G1 and G2 are generic. A
detailed elaboration with precise definitions and proofs can be found in Section A.3. The
idea is to define a natural parametrization of (A,Σ) and to show that the restrictions
that assumptions G1 and G2, respectively, impose on (A,Σ) just exclude a Lebesgue
null set in the natural parameter space and thus can be considered as generic.

In this section, let K such that KX ≤ K ≤ 2KX be arbitrary but fixed. Let λk denote
the k-dimensional Lebesgue measure on Rk.

Let Θ1 denote the set of all possible parameters (A′,Σ′) for a K-variate VAR processes
W ′ that additionally satisfy assumption A2, i.e., correspond to structural W ′. Let S1

denote the subset of those (A′,Σ′) ∈ Θ1 for which also assumption G1 is satisfied. And
let g denote the natural parametrization of Θ1 which is defined in Section A.3.1.

Proposition 3.1. We have λK2+K (g−1(Θ1 \ S1)) = 0. That is, assumption G1 only
excludes a set of parameters of Lebesgue measure 0 from the set of parameters that
satisfy (A1 and) A2.
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A proof can be found in Section A.3.1. The proof idea is that g−1(Θ1 \S1) is essentially
contained in the union of the root sets of finitely many multivariate polynomials and
hence is a Lebesgue null set.

Let Θ2 denote the set of all possible parameters (A′,Σ′) for the K-variate VAR processes
W that additionally satisfy assumption A3, i.e., are such that the submatrix D of A is
zero. Let S2 denote the subset of those (A′,Σ′) ∈ Θ2 for which also assumptions G1
and G2 are satisfied. Let h denote the natural parametrization of Θ1 which is defined
in Section A.3.2. A proof for the following proposition (which is based on a similar idea
as that of Proposition 3.1) can also be found in Section A.3.2.

Proposition 3.2. We have λ2K2−KXKZ
(h−1(Θ2 \ S2)) = 0. That is, assumptions G1

and G2 jointly only exclude a set of parameters of Lebesgue measure 0 from the set of
parameters that satisfy A3.

3.7. Estimation algorithms

In this section we examine how the identifiability results in Section 3.6 can be translated
into estimators on finite data. We propose two algorithms.

3.7.1. Algorithm based on variational expectation maximization

Here we present an algorithm for estimatingB and C which is closely related to Theorems
3.1 and 3.2. Keep in mind that the latter theorem in fact only states identifiability for
S(C) (the set of those columns of C that have at least two non-zero entries, defined
in Section 3.6.2), up to scaling, not for the exact C. The idea is the following: We
transform the model of X underlying these theorems (i.e. the general model from Section
3.4.1 together with assumptions A1, A2 and G1 from Section 3.6.1) into a parametric
model by assuming the noise terms Nk

t to be mixtures of Gaussians.7 Then we estimate
all parameters, including B and C, by approximately maximizing the likelihood of the

7Obviously, Theorems 3.1 and 3.2 also imply identifiability of B and (up to scaling) S(C) for this
parametric model. We conjecture that this implies consistency of the (non-approximate) maximum
likelihood estimator for that model under appropriate assumptions.
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Algorithm 1 Estimate B,C using variational EM
1: Input: Sample x1:L of X1:L.
2: Initialize the transition matrix and the parameters of the Gaussian mixture model,

denoted as θ0, set j ← 0.
3: repeat
4: E step: Evaluate

qj(z1:L, v
X
1:L, v

Z
1:L) = qj(z1:L)qj(vX1:L)qj(vZ1:L),

which is the variational approx. to the true posterior qj(z1:L, v
X
1:L, v

Z
1:L|x1:L), by

maximizing the variational lower bound, i.e., qj = arg maxq L(q, θj).
5: M step: Evaluate θj+1 = arg maxθ L(qj, θ).
6: j ← j + 1.
7: until convergence
8: Output: The final θj, containing the estimated B,C.

Algorithm 2 Estimate B using covariance structure
1: Input: Sample x1:L of X1:L.
2: Solve the linear Equation (3.7), with ΓXi replaced by Γ̂Xi . Let (Û1, Û2) denote the

solution.
3: Solve Equation (3.9) with U := (Û1, Û2) for B̃. Let B̂1, . . . , B̂n denote the solvents.
4: Output: B̂1, . . . , B̂n.

given sample of X using a variational expectation maximization (EM) approach similar
to the one in [Oh et al., 2005]. (Directly maximizing the likelihood is intractable due
to the hidden variables (Z and mixture components) that have to be marginalized out.)
Let y1:L be shorthand for (y1, . . . , yL). The estimator is outlined by Algorithm 1, where
(V X

t , V
Z
t ) with values (vXt , vZt ) denote the vectors of mixture components for NX

t and
NZ
t , respectively; qj(z1:L, v

X
1:L, v

Z
1:L|x1:L) the true posterior of Z1:L, V

X
1:L, V

Z
1:L under the

respective parameter vector θj (which comprises A,Σ as well as the Gaussian mixture
parameters) at step j; and L the variational lower bound. The detailed algorithm can
be found in Section A.4. Note that, if needed, one may use cross validation as a heuristic
to determine KZ and the number of Gaussian mixture components.

3.7.2. Algorithm based on the covariance structure

Now we present an algorithm, closely related to Theorem 3.3, for estimating B up to
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finitely many possibilities. It relies on the proof idea of that theorem, as we outlined
it at the end of Section 3.6.2, and it is meant to be applied for cases where the condi-
tions of that theorem are met. It uses only the estimated autocovariance structure of
X. Keep in mind that Γ̂Xi denote the sample autocovariance matrices (similar to the
true autocovariances ΓXi defined in Section 3.5). The estimation algorithm is given by
Algorithm 2.

3.7.3. Model checking

Ideally we would like to know whether the various model assumptions we make in this
chapter, most importantly the one that the entries of B can in fact be interpreted
causally, are appropriate. Obviously, this is impossible to answer just based on the
observed sample of X. Nonetheless one can check these assumptions to the extent they
imply testable properties of X.

For instance, to check (to a limited extent) the assumptions underlying Theorems 3.1
and 3.2 and Algorithm 1, i.e., the general statistical and causal model assumptions from
Sections 3.4.1 and 3.4.2 together with A1, A2 and G1 from Section 3.6.1, we propose
the following two tests: First, test whether Rt(Û1, Û2) is independent of (Xt−2−j)Jj=0,
for (Û1, Û2) as defined in Algorithm 2, and for say J = 2. (If Algorithm 2 finds no
(Û1, Û2) then the test is already failed.) Second, check whether all components of Xt are
non-Gaussian using e.g. the Kolmogorov-Smirnov test [Conover, 1971] for Gaussianity.

Note that under the mentioned assumptions, both properties of X do in fact hold true.
Regarding the independence statement, this follows from Lemmas 3.4 and 3.2. W.r.t. the
non-Gaussianity statement, this follows from the fact [Ramachandran, 1967, Theorem
7.8] that the distribution of an infinite weighted sum of non-Gaussian random variables
is again non-Gaussian. It should be mentioned that the first test can also be used to
check (to a limited extent) the assumptions underlying Theorem 3.3 and Algorithm 2.
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3.8. Experiments

In this section we evaluate the two algorithms proposed in Section 3.7 on synthetic and
real-world data and compare them to the practical Granger causation estimator. Keep in
mind that the latter is defined by replacing the covariances in Equation (3.3) by sample
covariances (after centering).

3.8.1. Synthetic data

We empirically study the behavior of Algorithms 1 and 2 on simulated data, in depen-
dence on the sample length. Note that, based on theoretical considerations (see Section
3.4.3), it can be expected that the error of the practical Granger estimator is substan-
tially bounded away from zero in the generic case, even when the sample size goes to
infinity.

3.8.1.1. Algorithm 1

Here we evaluate Algorithm 1.

Experimental setup: We consider the case of a 2-variate X and a 1-variate Z, i.e.,
KX = 2, KZ = 1. We use sample lengths L = 100, 500, 1000, 5000 and for each sample
length we do 20 runs. In each run we draw the matrix A uniformly at random from
the stable matrices (i.e., the absolute value of all eigenvalues of A is less than 1) and
then randomly draw a sample of length L from a VAR process W = (X,Z)> with A as
transition matrix and noise Nk

t distributed according to a super-Gaussian mixtures of
Gaussians. Then we apply Algorithm 1 and the practical Granger causation estimator
on the sample of only X.

Outcome: We calculated the root-mean-square error (RMSE) of Algorithm 1, i.e.,
1
20
∑20
n=1(Best

n −Btrue
n )2, where Best

n , Btrue
n denotes the output of Algorithm 1 and the true

B, respectively, for each run n. The RMSE as a function of the sample length L is
depicted in Figure 3.3, along with the RMSE of the practical Granger algorithm.
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Figure 3.3.: RMSE of Algorithm 1 and the practical Granger estimator as a function of
sample length L.

Discussion: This suggests that for L → ∞ the error of Algorithm 1 is negligible,
although it may not converge to zero. The reason for it not converging to zero is that
we use variational EM which can yield a systematically wrong estimate whenever the
approximative assumptions it relies on do not hold. The error of the practical Granger
estimator for L→∞ is still small but substantially bigger than that of Algorithm 1.

3.8.1.2. Algorithm 2

Here we empirically establish the error of Algorithm 2, more precisely the deviation
between the true B and the best out of the several estimates that Algorithm 2 outputs
(recall that Theorem 3.3 only guarantees identifiability up to finitely many possibilities).
Obviously in general it is unknown which of the outputs of Algorithm 2 is the best
estimate. However here we rather want to establish that asymptotically, the output of
Algorithm 2 in fact contains the true B. Also we compare Algorithm 2 to the practical
Granger estimator, although it needs to be said, that the latter is usually not applied to
univariate time series.

Experimental setup: We consider the case of 1-variate X and Z, i.e., KX = KZ = 1.
We consider sample lengths L = 101, 102, . . . , 107 and for each sample length we do 20
runs. In each run we draw the matrix A uniformly at random from the stable matrices
with the constraint that the lower left entry is zero and then randomly draw a sample of
length L from a VAR process W = (X,Z)> with A as transition matrix and standard
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Figure 3.4.: RMSE of Algorithm 2 and the practical Granger estimator as a function of
sample length L.

normally distributed noise N . Then we apply Algorithm 2 and the practical Granger
causation estimator on the sample of only X.

Outcome: We calculated the root-mean-square error (RMSE) of Algorithm 2, i.e.,
1
20
∑20
n=1(Bbest est

n −Btrue
n )2, where Bbest est

n , Btrue
n denotes the best estimate for B returned

by Algorithm 2 (i.e., the one out of the two outputs that minimizes the RMSE) and true
B for each run n, respectively. The RMSE as a function of the sample length L is
depicted in Figure 3.4, along with the RMSE of the practical Granger estimator.

Discussion: This empirically shows that the set of two outputs of Algorithm 2 asymp-
totically seem to contain the true B. However, it takes at least 1000 samples to output
reasonable estimates. As expected, the practical Granger estimator does not seem to
converge against the true B.

3.8.2. Real-world data

Here we examine how Algorithm 1 performs on a real-world data set.

Experimental setup: We consider a time series Y of length 340 and the three compo-
nents: cheese price Y 1, butter price Y 2, milk price Y 3, recorded monthly from January
1986 to April 20148. We used the following estimators: We applied practical Granger
estimation to the full time series Y (i.e., considering X = Y ) and denote the outcome by

8The data was retrieved from http://future.aae.wisc.edu/tab/prices.html on 29.05.2014.
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AfG. We applied practical Granger estimation to the reduced time series (Y 1, Y 2)> (i.e.,
considering X = (Y 1, Y 2)>) and denote the outcome by BpG. We applied Algorithm 1
to the full time series Y (i.e., considering X = Y ), while assuming an additional hidden
univariate Z, and denote the outcome by ĀfA. We applied Algorithm 1 to the reduced
time series (Y 1, Y 2)> (i.e., considering X = (Y 1, Y 2)>), while assuming an additional
hidden univariate Z, and denote the outcome by ÃpA. Furthermore we do a model
check as suggested in Section 3.7.3, although the sample size may be too small for the
independence test to work reliably.

Note that causal inference is particularly relevant in such economic settings. For in-
stance, a policy maker may wonder about the effect of a change in the regulation of milk
prices on the price of other groceries such as cheese and butter.

Outcome: The outputs are:

AfG =


0.8381 0.0810 0.0375
0.0184 0.9592 −0.0473
0.2318 0.0522 0.7446

 ,

BpG =
 0.8707 0.0837
−0.0227 0.9559

 ,

ĀfA =


0.8809 0.1812 0.1016 −0.1595
0.0221 1.0142 −0.0290 −0.0492
0.2296 0.1291 0.8172 −0.1143
1.0761 0.6029 −0.7184 0.4226

 ,

ÃpA =


0.9166 0.0513 −0.0067
−0.0094 0.9828 −0.0047
−0.0031 0.1441 −0.2365

 .

The outcome of the model check, based on a significance level of 5%, is the following:
the hypothesis of Gaussianity is rejected. Also the independence hypothesis stated in
Section 3.7.3 is rejected. The latter implies that the model assumptions underlying
Algorithm 1 are probably wrong.

Discussion: We consider AfG as ground truth. Intuitively, non-zero entries at positions
(i, 3) can be explained by the milk price influencing cheese/butter prices via production
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costs, while non-zero entries at positions (3, j) can be explained by cheese/butter prices
driving the milk price via demand for milk. The explanation of non-zero entries at
positions (1, 2) an (2, 1) is less clear. One can see that the upper left 2× 2 submatrix of
ÃpA is quite close to that of AfG (the RMSE over all entries is 0.0753), which shows that
Algorithm 1 works well in this respect. Note that BpG is even a bit closer (the RMSE
is 0.0662). However, the upper right 2× 1 matrix of ÃpA is not close to a scaled version
of the upper right 2× 1 submatrix of AfG (which corresponds to C). This is in contrast
to what one could expect based on Theorem 3.2. ĀfA can be seen as an alternative
ground truth. It is important to mention that the estimated order (lag length) of the
full time series Y is 3, according to Schwarz’s criterion (SC) [Lütkepohl, 2006], which
would violate our assumption of a VAR process of order 1 (Section 3.4.1). The model
check seems to detect this violation of the model assumptions.

3.9. Conclusions of this chapter

One of the main insights from this chapter is that while the problem of hidden confound-
ing cannot be solved by temporal knowledge, its severity can nonetheless be weakened:
When assuming linearity and non-Gaussian noise in a-temporal (i.i.d.) settings, then
influences between the observed variables are only identifiable up to a finite number of
possibilities [Hoyer et al., 2008] (to the best of our knowledge). In contrast, in Theorem
3.1 we showed that, under weak additional assumptions, in time series, linearity and
non-Gaussianity of noise are sufficient to uniquely identify the influences between ob-
served variables. This may indicate that also in other regards identifiability of the causal
model can be improved by temporal knowledge – which is often cheap to obtain.

It is important to note that, while we presented concrete estimation algorithms, our
analysis of identifiability does not only apply to these algorithms, but can be useful for
other estimation algorithms (for the assumed scenario) as well.
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Chapter 4.

Approximate causal inference by
bounding confounding in i.i.d. settings

4.1. Introduction

After Chapter 3, this is the second chapter that focuses on causal inference, while it
already contains an example of a decision making application, as illustrated in Figure
4.1 on page 80.

In Chapter 3, we integrated temporal knowledge for causal inference, which determines
the causal ordering, up to instantaneous effects. In this chapter, we again assume the
causal ordering as given, may it be based on temporal or other information. But ad-
ditionally, we assume the availability of knowledge that implies bounds on hidden con-
founding.

The investigation is driven by the following thought: Randomized experiments constitute
the gold standard for causal inference – are often expensive, unethical or impossible to
perform, as pointed out in Chapter 2. The main reason for randomization is to prevent
hidden confounding. But even if we do not have “perfect” randomization, which would
completely prevent hidden confounding, the underlying setting may contain mechanisms
that at least imply bounds on hidden confounding (we illustrated the problem of hidden
confounding in Example 2.3). This thought also underlies so-called quasi-experimental
designs, which we will summarize in Section 4.2. In contrast to most work in the area
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decisioncausal modelsystem itself/
prior knowledge

Chapter 3:
Chapter 4:
Chapter 5:

Figure 4.1.: The content of this chapter illustrated in black, relative to the rest of this
thesis in gray, and the overall “inference path” in red.

of quasi-experimental designs though, our approach is based on the language of PCMs,
which allows a rigorous formalization of, and reasoning about, the various scenarios we
investigate.

So besides integration of additional knowledge, similar to Chapter 3, hidden confounding
will play a central role here. And even more than in Chapter 3, the focus will be on
approximate results, yielding constraints on the correct causal model instead of unique
identifiability (as indicated in Section 2.1.3.3). Two fundamental differences to Chapter
3 are that here we do not consider time series, but rather i.i.d. settings, i.e., settings
where the individual measurements are assumed to be independent samples (of the same
distribution); and we consider a broader class of models than in Chapter 3, where we
restricted ourselves to linear ones.

Parts of this chapter are based on the publication [Geiger et al., 2014].

4.1.1. Problem statement

YX

Z

Figure 4.2.: Causal DAG for the hidden confounding scenario (gray means hidden).
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We assume that we observe the variables X, Y and that Y does not influence X. That
is, we assume the DAG in Figure 4.2 to be the correct causal DAG for X, Y , with Z

capturing all common causes of X and Y . We assume Z to be partially or completely
unobserved. Note that we allow Z, and in some cases also X, Y , to be multivariate. That
is, we basically make no assumptions at this stage except that Y does not influence X,
since Z can comprise arbitrarily large parts of the “rest of the universe”.

Our general goal is to estimate the causal effect from X, which we also refer to as
treatment variable, to Y , which we also refer to as outcome variable. Formally, this
means that we want to estimate P (Y |doX=x) or related quantities such as the effect
of treatment on the treated (ETT) [Pearl, 2000] or the causal strength from X to Y

[Janzing et al., 2013]. Without further assumptions, these quantities are impossible to
estimate. To give an extreme example, one can imagine observing the deterministic
relationship p(y|x) = δyx, with δyx denoting the Kronecker delta. This observation can
be induced by two completely different underlying causal structures, the first one being
that Y in fact is produced by copying X, the second one being that both X and Y are
copied from Z without X having any causal effect on Y .

4.1.2. Outline of our approach

The approach we suggest to approximately infer the causal effect of X on Y in spite of
hidden confounding consists of two parts: In the first part – Section 4.4 – we propose
various possibilities to formalize the following notions:

• Observed dependence: the dependence of Y on X that we can observe based on
P (X, Y ).

• Back-door dependence: the “spurious association” [Pearl, 2000] between X and Y
due to the confounder Z.

• Causal effect: the causal effect of X on Y , as defined in Definition 2.6, but also
notions of conditional causal effect such as the ETT.
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Table 4.1.: Formalizing observed dependence, back-door dependence, causal effect and
deviation measure.

Section Notion Formalized by ...
4.4.1 observed dependence I(X : Y )

back-door dependence I(Z : X), CZ→X
causal effect CX→Y
deviation measure difference

4.4.2 observed dependence I(X : Y )
back-door dependence I(Z : X)
causal effect I(X → Y |doZ)
deviation measure difference

4.4.3 observed dependence p(Y |X=x)
back-door dependence I(X : Z), min{CZ→X ,CZ→Y }
causal effect p(Y |doX=x)
deviation measure D(·‖·)

4.4.4 observed dependence E(dx log p(Y |X=x)2)
back-door dependence E((∂2 log p(Y |X=x, doX=x))2)
causal effect E((∂1 log p(Y |X=x, doX=x))2)
deviation measure difference

4.4.5 observed dependence E(Y |X=x′)− E(Y |X=x)
back-door dependence E(Y |X=x′, doX=x)− E(Y |X=x, doX=x)
causal effect E(Y |X=x′, doX=x′)− E(Y |X=x′, doX=x)
deviation measure difference

4.4.6 observed dependence dxE(Y |X=x)
back-door dependence ∂1E(Y |X = x, doX=x)
causal effect ∂2E(Y |X = x, doX=x)
deviation measure difference
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For all formalizations we present inequalities (see Table 4.1 for an overview) which turn
out to always have the following prototypical form:back-door

dependence

 ≥ d
observed

dependence

 ,
causal

effect


(where d(·, ·) stands for deviation measure). In some of these results, observed de-
pendence, back-door dependences, and causal effect are real numbers and d(·, ·) simply
stands for the usual difference which allows us to convert the prototypical form intocausal

effect

 ≥
observed

dependence

−
back-door

dependence

 ,
which may be more convenient for applications. In other cases, observed dependence
and causal effect are high- or infinite-dimensional objects such as (conditional) distribu-
tions.

In order to draw conclusions on the true causal effect using the inequalities from the
first part, one needs to have constraints on the back-door dependence. Therefore, in the
second part – Section 4.5 –, we demonstrate how in various settings, one can integrate the
structure of these settings such as to obtain constraints on the back-door dependence.
Based on these constraints together with the observed dependence one can then use the
results from the first part to infer bounds on the true causal effect.

Our approach can be seen as a step into the direction of establishing a formal, principled
framework for causal inference methods that try to integrate structures beyond the clas-
sical randomized experiments and observational studies, in particular quasi-experimental
designs. But it may well be that a general framework does not exist, as the settings are
too inhomogeneous and always require some creativity for their discovery and formal-
ization.

4.1.3. Structure of this chapter

The remainder of this chapter is structured as follows

• In Section 4.2 we discuss related work.
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• Section 4.3 contains preliminaries.

• We conclude with Section 4.6.

Note that in contrast to the other chapters, we will include the central proofs directly
within the chapter instead of putting them into the appendix as they are rather short
and non-technical.

4.2. Related work

Several approaches have been developed to identify or approximate causal effects in i.i.d.
settings in spite of hidden confounders.

Back-door/front-door criterion (see [Pearl, 2000, 2009]): We described this ap-
proach, which assumes that the complete causal DAG to be known and some variables
besides X, Y to be observed, in Section 2.1.3.2 and in particular in Example 2.2. Be-
sides the fundamental limitation – requiring knowledge of the complete causal DAG plus
enough observed variables –, one drawback of this method is that it cannot be used if
X is deterministically coupled to the variable that blocks the back-door path.

Instrumental variable (IV) design (see e.g. [Pearl, 2000, Angrist et al., 1996, Efron
and Feldman, 1991]): In the simplest case, the causal DAG in Figure 4.2 is augmented
by a parentless node Z with an arrow to X. An important example are clinical trials
with partial compliance. The additional Z allows to infer bounds on the average causal
effect. One drawback of this method is that it yields a convex optimization problem with
the number of equations growing exponentially with the cardinality of X. Furthermore,
to apply this method one needs to know p(X, Y |Z) while in Section 4.2 we present a
scenario where p(Z) (additional to p(X, Y )) helps to estimate the causal effect.

Regression discontinuity (RD) design (see e.g. [Thistlewaite and Campbell, 1960,
Imbens and Lemieux, 2008, Lee and Lemieux, 2010]): This framework is applicable to
cases where an additional observable W mediating between Z and X is measured and
X is a deterministic function of W that contains a discontinuity. Under the assumption
of linearity of the remaining structural equations, the effect from X to Y , i.e. the
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linear coefficient, can be identified. One limitation of this method is that it needs the
discontinuity and a large slope alone does not suffice.

General quasi-experimental designs: IV, RD and similar designs are often sub-
sumed under the name quasi-experimental designs. While lacking a precise definition
(to the best our knowledge), characteristics of quasi-experimental designs are [Shadish
et al., 2002]:

• the goal to infer causal effects, as with classical randomized experiments,

• a similar data collection procedure as with classical randomized experiments, in
particular the ability to obtain samples for all relevant values of X (in the binary
case: availability of some sort of treatment and control groups),

• no perfect control over, or randomization of, the assignment (implying less possi-
bility for counterfactual reasoning), but some control or at least knowledge on the
assignment mechanism.

Note that quasi-experiments are of particular relevance in economics [Meyer, 1995].

General framework for “non-classical” causal inference settings: It needs to be
mentioned that alternative approaches to a formal framework for “non-classical” causal
inference settings could be more principled than ours. For instance, such a framework
could be based on ideas in [Balke and Pearl, 1994], where (1) knowledge is translated into
constraints on the complete causal model (instead of just the strength of confounding)
and then (2) the implications of the constraints on the effect of X on Y are calculated.

4.3. Preliminaries

Keep in mind that we will sometimes write p(X) for the density of X, and p(X|Y ) for
the density of X given Y , or p(X|Y = y) when evaluating it at the point Y = y. Also
keep in mind Remark 2.2 when reading expressions like p(Y |X=x, doX=x).

Throughout the chapter we will work with Z,X, Y with discrete as well as with con-
tinuous ranges. Unless noted otherwise, we make the following technical assumption
regarding the distributions of the random variables in a FCM M (Definition 2.1) with
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variables X1, . . . , Xn, corresponding structural equation functions f1, . . . , fn, and causal
DAG G: for each Xj, the random variable fj(paj, Nj) has a density w.r.t. the Lebesgue
measure (in the continuous case) or w.r.t. the counting measure (in the discrete case)
respectively, denoted by qj(xj; paj) for each value paj of PAj (note that we have to
slightly deviate from this assumption in Section 4.5.1 though). This assumption implies
the following simple lemma, which is only formulated for the case n = 3, since we only
need this case in this thesis. A proof can be found in Section B.1.

Lemma 4.1. Under the assumption regarding the density of fj(paj, Nj) made above, the
joint distribution of X1, X2, X3 induced by a causal model M or any post-interventional
model MdoXi=x has a density w.r.t. the Lebesgue measure (in the continuous case) or
counting measure (in the discrete case), respectively. Moreover, this density factorizes
according to the causal DAG belonging to the respective model.

We will use the following fact which immediately follows from [Pearl, 2000, Corollary
7.3.2].

Fact 4.1. For all x we have

p(Y |X = x, doX=x) = p(Y |X = x),

E(Y |X = x, doX=x) = E(Y |X = x).

4.4. The relation between observed dependence,
back-door dependence and causal effect

In this section we present various possibilities to formalize the notions of observed de-
pendence, back-door dependence and causal effect. For all formalizations we prove that
the back-door dependence is equal to, or bounds from above, the deviation between the
observed dependence and the actual causal effect.

Sections 4.4.1, 4.4.2 apply to X, Y, Z with finite range. Sections 4.4.3, 4.4.5 apply to
X, Y, Z with arbitrary range. Sections 4.4.4 and 4.4.6 apply to X with continuous
range.
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4.4.1. Approximating the causal strength from X to Y

The basic quantities in this section are:
- observed dependence: I(X : Y ),
- back-door dependence: I(X : Z), CZ→X ,
- causal effect: CX→Y .

We consider the case of Z,X, Y having finite range. Janzing et al. [2013] proposed a
definition for the causal strength of a set of arrows in a causal DAG. We briefly want
to repeat this definition for the special case of measuring the strength of a single arrow.
For a set of observables V = {X1, . . . , Xn}, a DAG G′ with V as the set of nodes and
a joint distribution p(X1, . . . , Xn) and for any arrow Xi → Xj in G′ we first define the
distribution pXi→Xj

corresponding to deleting Xi → Xj from the graph and feeding Xj

with an independent copy of Xi instead, see also [Ay and Krakauer, 2007]:

pXi→Xj
(xj|paXi→Xj

Xj
) :=

∑
x′i

p(x′i)p(y|x′i, paXi→Xj

Xj
),

pXi→Xj
(xk|paXi→Xj

Xk
) := p(xk|paXk

), for all k 6= j,

pXi→Xj
(x1, . . . , xn) :=

n∏
k=1

pXi→Xj
(xk|paXi→Xj

Xk
),

where paXi→Xj

Xk
denotes (values of) the set of parents of Xk in the modified graph G′

without arrow Xi → Xj (obviously this actually only makes a difference for paXj
). Now

we are able to define the causal strength CXi→Xj
by the impact of the edge deletion:

CXi→Xj
:= D(p(X1, . . . , Xn)‖pXi→Xj

(X1, . . . , Xn)).

Let us get back to our specific confounding scenario (the causal DAG in Figure 4.2 on
page 80). For general DAGs, Janzing et al. [2013] showed CX→Y ≥ I(X : Y |PAY \X),
that is, the information Y contains about X given its other parents is a lower bound for
causal strength (they argue that this property would be desirable for other information-
theoretic measures of causal strength as well). Hence in our confounding scenario we
have CX→Y ≥ I(X : Y |Z). Also keep in mind that CZ→X = I(Z : X) in our setting.
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Lemma 4.2. We have

I(X : Y |Z) ≥ I(X : Y )− I(X : Z). (4.1)

Proof. The statement follows from the fact that

I(X : Y |Z) + I(X : Z) = I(X : Z, Y ) ≥ I(X : Y ),

see [Cover and Thomas, 1991].

We consider I(X : Y ) as a measure of observed dependence between X and Y . The
following theorem shows that the back-door dependence CZ→X bounds the difference
between the observed dependence and the true causal effect CX→Y .

Theorem 4.1. We have

CZ→X ≥ I(X : Y )− CX→Y . (4.2)

Proof. This follows from Lemma 4.2 together with the fact that CX→Y ≥ I(X : Y |Z)
and CZ→X = I(X : Z) in our confounding scenario (i.e. the DAG in Figure 4.2).

4.4.2. Approximating the information flow from X to Y

The basic quantities in this section are:
- observed dependence: I(X : Y ),
- back-door dependence: I(X : Z),
- causal effect: I(X → Y |doZ).

Another information theoretic quantity to measure the causal effect of X on Y is the
information flow proposed by [Ay and Polani, 2008]. In our setting (the causal DAG in
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Figure 4.2) it is defined as

I(X → Y |doZ) :=∑
z

p(z)
∑
x

p(x|doZ=z)
∑
y

p(y|doX=x, doZ=z)

× log p(y|doX=x, doZ=z)∑
x′ p(y|doX=x′, doZ=z)p(x′|doZ=z) .

Since p(y|doX=x, doZ=z) = p(y|x, z) in our setting, we simply have I(X → Y |doZ) =
I(X : Y |Z).

So we can establish a theorem for the information flow similar to the one for the causal
strength. It follows immediately from Lemma 4.2.

Theorem 4.2. We have

I(X : Z) ≥ I(X : Y )− I(X → Y |doZ). (4.3)

4.4.3. Bounding the Kullback-Leibler divergence between
p(Y |X=x) and p(Y |doX=x)

The basic quantities in this section are:
- observed dependence: p(Y |X=x),
- back-door dependence: I(X : Z), min{CZ→X ,CZ→Y },
- causal effect: p(Y |doX=x).

In some sense, p(Y |doX=x) is the most fundamental characterization of the causal
effect from X to Y , while p(Y |X=x) can be seen as the corresponding characterization
of their observed dependence. In this section we show that the deviation between these
two objects can be bounded by quantities which measure the back-door dependence,
I(X : Z) and min{CZ→X ,CZ→Y }. We formalize the notion of deviation here by

D(p(Y |X)‖p(Y |doX)) =
∑
x

p(x)D(p(Y |x)‖p(Y |doX=x)).

89



Chapter 4. Approximate causal inference by bounding confounding in i.i.d. settings

Theorem 4.3. We have

D(p(Y |X)‖p(Y |doX)) ≤ min{CZ→X ,CZ→Y } ≤ I(X : Z).

Proof. First note that
pZ→X(z, x, y) = p(z)p(x)p(y|z, x) and
pZ→Y (z, x, y) = p(z)p(x|z)∑z′ p(y|z, x)p(z′).

This implies
p(y|doX=x) = pZ→X(y|X=x) and
p(y|doX=x) = pZ→Y (y|X=x).

Therefore, using the chain rule for Kullback-Leibler divergence,

D(p(Y |X)‖p(Y |doX))

= D(p(Y |X)‖pZ→X(Y |X))

≤ D(p(X, Y )‖pZ→X(X, Y ))

= CZ→X(= I(Z : X)).

Similarly one can derive D(p(Y |X)‖p(Y |doX)) ≤ CZ→Y .

The above theorem makes a statement w.r.t. the divergence between p(Y |x) and p(Y |doX=x)
averaged over all values x of X. But it is also possible to derive a pointwise version:

Theorem 4.4. For all x

D(p(Y |x)‖p(Y |dox)) ≤ D(p(Z|x)‖p(Z)),

with equality iff p(z|x) = p(z) for all z.
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Proof. By the log sum inequality we have

p(y|x) log p(y|x)
p(y|dox)

=
(∑

z

p(y|x, z)p(z|x)
)

log
∑
z p(y|x, z)p(z|x)∑
z p(y|x, z)p(z)

≤
∑
z

p(y|x, z)p(z|x) log p(y|x, z)p(z|x)
p(y|x, z)p(z) (4.4)

=
∑
z

p(y, z|x) log p(z|x)
p(z) .

Equality holds in (4.4) iff p(y|x, z)p(z|x) = cp(y|x, z)p(z) for all z and some constant c,
i.e. iff p(z|x) = p(z) for all z. Summing over all y yields the claimed inequality.

Note that taking the average w.r.t. X in Theorem 4.4 is another way to prove the first
part of Theorem 4.3. With a similar proof we can also derive the following inequality
w.r.t. the “inverse mutual information” D(p(Z)p(X)‖p(Z,X)) (as opposed to the usual
mutual information I(Z : X) = D(p(Z,X)‖p(Z)p(X))). For this purpose let us define

D(p(Y |doX)‖p(Y |X)) :=
∑
x

p(x)
∑
y

p(y|doX=x) log p(y|doX=x)
p(y|X=x) .

Corollary 4.1. We have

D(p(Y |doX)‖p(Y |X)) ≤ D(p(Z)p(X)‖p(Z,X)).

To assess which bound is relevant for a scenario, we recall that for two distributions p
and q, D(p‖q) diverges when q = 0 and p > 0 on a set of Lebesgue measure greater
than 0. If the observed dependence p(Y |X) is deterministic, p(Y |doX) needs to be
deterministic if D(p(Y |doX)‖p(Y |X)) is finite.

4.4.3.1. An example for bounding the average causal effect from X to Y

Often one is interested in estimating the average causal effect

E(Y |doX=x′)− E(Y |doX=x)
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for two values x, x′ of X [Pearl, 2000], in particular because this quantity is easy to
interpret. In what follows, we want to give an example how one can derive bounds
on this quantity based on Theorem 4.3. It is important to mention however, that the
assumptions we make are very restrictive. The purpose of the example is only to show
that information theoretic bounds on the back-door dependence can, under appropriate
assumptions, imply bounds for the average causal effect.

Let X be binary, p(Y |x) = N (µx, σ2), and p(Y |doX=x) = N (µdox, σ
2
do ), for x = 0, 1

(hence particularly E(Y |doX=x) = µdox).1

In this case we can calculate (have in mind that ln is the natural logarithm)

p(X=0)(µ0 − µdo 0)2 + p(X=1)(µ1 − µdo 1)2

= 2σ2
do

(
D(p(Y |X)‖p(Y |doX))− ln σ

2
do
σ2 −

σ2

2σ2
do

+1
2

)

≤ 2σ2
do

(
min{CZ→X ,CZ→Y } − ln σ

2
do
σ2 −

σ2

2σ2
do

+ 1
2

)
. (4.5)

Now assume we fix min{CZ→X ,CZ→Y } and σ2
do . Keep in mind that µ0, µ1, σ

2 are ob-
served. Then we can derive upper and lower bounds on the average causal effect
µdo 1 − µdo 0 by maximizing and minimizing it, respectively, under the constraints on
the pair (µdo 1, µdo 0) imposed by inequality (4.5).

4.4.4. Approximating the Fisher information

The basic quantities in this section are:
- observed dependence: FY |X(x),
- back-door dependence: F1

Y |X,doX(x, x),
- causal effect: F2

Y |X,doX(x, x).

1Note, however, that both p(Y |X=0) and p(Y |X=1) being Gaussian actually provides some evidence
for the absence of confounding since a confounder will often destroy this simple structure of P (Y |X)
[Janzing et al., 2011].
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In the following, ∂if(w1, . . . , wn) denotes the partial derivative w.r.t. the ith argument
of f evaluated at position (w1, . . . , wn). And dwg(w) denotes the total derivative of g(w)
w.r.t. w at position w, in particular dwf(w,w) = dwg(w) for g(w) := f(w,w).

Given a family of distributions depending on continuous parameters, Fisher informa-
tion provides a natural way to quantify the sensitivity of a probability distribution to
infinitesimal parameter changes. It plays an important role for the error made when
estimating the true parameter value from empirical data [Rao, 1945]. Here we quantify
causal influence by the sensitivity of p(Y |dox) to small changes of x. This can be con-
sidered as a “local” measure of causal strength in the neighborhood of x. We introduce
the following notation:

FY |X(x) :=
∫

(dx log p(y|X=x))2p(y|X=x)dy,

F iY |X,doX(x, x′) :=
∫

(∂i+1 log p(y|X=x, doX=x′))2p(y|X=x, doX=x′)dy,

for i = 1, 2. (Note that y in log p(y|X=x, doX=x′) counts as argument, so, for instance,
∂2 log p(y|X=x, doX=x′) is the partial derivative w.r.t. x.)

Theorem 4.5. For all x,
√
FY |X(x)−

√
F2
Y |X,doX(x, x) ≤

√
F1
Y |X,doX(x, x).

Proof. First note that by the chain rule

dx log p(y|X=x, doX=x) = ∂2 log p(y|X=x, doX=x) + ∂3 log p(y|X=x, doX=x).

By Fact 4.1 we have p(y|X=x) = p(y|X=x, doX=x) for all x, y.

Together we obtain

(
E((dx log p(y|X=x))2)

) 1
2

=
(
E((∂2p(y|X=x, doX=x) + ∂3p(y|X=x, doX=x))2)

) 1
2

≤
(
E((∂2p(y|X=x, doX=x))2)

) 1
2 +

(
E((∂3p(y|X=x, doX=x))2)

) 1
2 .

Note that the expectation is taken w.r.t. p(y|x).
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4.4.5. Approximating the effect of treatment on the treated from
X to Y

The basic quantities in this section are:
- observed dependence: E(Y |X=x′)− E(Y |X=x),
- back-door dependence: E(Y |X=x′, doX=x)− E(Y |X=x, doX=x),
- causal effect: E(Y |X=x′, doX=x′)− E(Y |X=x′, doX=x).

Following [Pearl, 2000], we define the quantity

E(Y |X=x′, doX=x′)− E(Y |X=x′, doX=x)

as the effect of treatment on the treated. As the name already suggests, the idea behind
this quantity is to measure the deviation between the average response of the treated
subjects and the average response of these same subjects had they not been treated.
The following result w.r.t. the effect of treatment on the treated follows from Fact 4.1.

Theorem 4.6. We have for all x, x′

E(Y |X=x′)− E(Y |X=x) = E(Y |X=x′, doX=x′)− E(Y |X=x′, doX=x)

+ E(Y |X=x′, doX=x)− E(Y |X=x, doX=x).

Note that in mediation analysis [Pearl, 2001, Avin et al., 2005, Robins and Greenland,
1992] a similar splitting into direct and indirect effect is used. However mediation
analysis addresses the problem of defining direct and indirect causal effects and not
back-door dependences.

We briefly want to discuss the other quantities that appear in Theorem 4.6. Obviously,
E(Y |X=x′) − E(Y |X=x) measures the observed dependence of Y on X. Now keep in
mind that in MdoX=x, X has no causal effect on Y anymore and hence Y statistically
depends on X solely via Z. Therefore the difference

E(Y |X=x′, doX=x)− E(Y |X=x, doX=x)

measures the strength of the back-door dependence of Y on X.

94



Chapter 4. Approximate causal inference by bounding confounding in i.i.d. settings

4.4.6. Approximating the differential effect of treatment on the
treated from X to Y

The basic quantities in this section are:
- observed dependence: dxE(Y |X=x),
- back-door dependence: ∂1E(Y |X = x, doX=x),
- causal effect: ∂2E(Y |X = x, doX=x).

First note that by ∂iE(Y |X=x, doX=x′) we mean ∂if(x, x′) for

f(x, x′) := E[Y |X=x, doX=x′]

(recall that ∂i denotes the partial derivative w.r.t. the ith argument). In the case of
continuous random variables Z,X, Y we want to consider the following quantity (if it
exists i.e. if the conditional expectation is differentiable):

∂2E(Y |X=x, doX=x),

which we call differential effect of treatment on the treated or simply differential effect
in cases where this does not lead to confusions. It is the analog to the discrete effect of
treatment on the treated (see Section 4.4.5) for the case of infinitesimal interventional
changes on X; we simply replaced a difference by a derivative.

Similar to Theorem 4.6 we can establish the following result. It follows from the chain
rule for derivatives together with Fact 4.1.

Theorem 4.7. For all x

dxE(Y |X=x) = ∂1E(Y |X=x, doX=x) + ∂2E(Y |X=x, doX=x).

The interpretation of this theorem is similar to the one for Theorem 4.6. Obviously,
dxE(Y |X=x) is the observed dependence, whereas the quantity ∂1E(Y |X = x, doX=x)
measures the back-door dependence of Y on X. So the observed dependence of Y on X

splits into the causal effect plus the back-door dependence.
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4.5. Prototypical application scenarios: integrating
knowledge that bounds the back-door dependence

In this section we present several prototypical scenarios where knowledge or beliefs can
be integrated that allow to derive bounds on the back-door dependence between X and
Y . Together with our results from Section 4.4 these bounds help to approximately
estimate the causal effect from X to Y .

4.5.1. A qualitative toy example

We want to give an example that demonstrates how human intuition concerning observed
dependence and causal effect relates to the theorems from Section 4.4.

Assume there is a drug that is indicated for a specific disease. We observe some not
too small number of people with the disease and see that some of them take the drug
and some do not. We find that all persons who took the drug recovered on the same
day whereas none of the persons not taking the drug recovered that fast. For each sick
person let X denote the date he or she takes the drug and Y the date he or she recovers.
Since these are only observations, we cannot exclude that there is a (hidden) confounder
Z, i.e. we assume the usual causal DAG (Figure 4.2 on page 80). We estimate the
distribution of Y given X by the empirical distribution, i.e. p(y|x) = δyx, where δyx
denotes the Kronecker delta.

Given the above setting, probably most people would argue that there has to be some
effect from the drug to the immediate healing of those people who took it. However,
formally and without further assumptions, p(Y |x) alone does not even tell us if there
is a causal link from X to Y at all. With the help of Theorem 4.3 though, we can
formally reason as follows. We make the weak additional assumption that X cannot
be completely determined by Z which we formalize by I(Z : X) < H(X). It seems
implausible that there exists a common cause of X and Y that determines both, the
exact date X a person takes the drug and the recovering date Y . E.g. the wealth of a
person may strongly influence both, the treatment he or she takes and how quickly he

96



Chapter 4. Approximate causal inference by bounding confounding in i.i.d. settings

or she recovers (via the general health condition), however it seems not plausible that
the wealth determines the exact day of taking the drug and of recovering.

For a proof by contradiction we may assume that there is no causal effect from X to Y ,
i.e. p(Y |doX=x) = p(Y |doX=x′) for all x, x′. Then

D(p(Y |X)‖p(Y |doX=x))

=
∑
x

p(x)D(p(Y |X=x)‖p(Y |doX=x))

=
∑
x

p(x)
∑
y

δyx log δyx
P (Y = y|doX=x)

=
∑
x

p(x) log 1
p(Y=x|doX=0) ≥ H(X),

where the last inequality is due to Gibb’s inequality [Cover and Thomas, 1991].

On the other hand, due to Theorem 4.3 we have

D(p(Y |X)‖p(Y |doX)) ≤ I(X : Z) < H(X),

which yields the contradiction. Hence we could formally show that there has to be some
causal effect from X to Y , p(Y |doX=x) 6= p(Y |doX=x′) for some x, x′. Note that the
above argumentation completely transfers to any other situation where p(y|x) = δyx,
particularly any other range of X and Y .

4.5.2. Partial randomization scenario

We first discuss a formal scenario, then an application example, and afterwards we
discuss how the scenario and our result is related to the instrumental variable design
[Pearl, 2000]. Here we assume X, Y, Z to have finite range.

4.5.2.1. The formal prototype

We consider a scenario where we have measured X and Y , and where hidden variables Z
and W are present and we know the distribution of W . The underlying causal structure
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YX

ZW

Figure 4.3.: The partial randomization causal DAG.

of all variables looks like the causal DAG depicted in Figure 4.3. We assume that W is
binary. Furthermore we assume that in this scenario I(Z : X|W = 0) = 0. The intuition
behind this assumption is that W decides whether X is influenced by Z (W = 1) or not.
This scenario implies the following inequality. Keep in mind that |dom(X)| denots the
size of (number of elements in) the domain of X.

Proposition 4.1. In the given scenario we have

I(Z : X) ≤ log (|dom(X)|) p(W=1). (4.6)

Proof. We calculate

I(Z : X) ≤ I(Z : X) + I(Z : W |X)

= I(Z : W,X)

= I(Z : W ) + I(Z : X|W )

= I(Z : X|W=0)p(W=0) + I(Z : X|W=1)p(W=1)

= I(Z : X|W=1)p(W=1)

≤ H(X|W = 1)p(W=1)

≤ log (|dom(X)|) p(W=1).

But Theorems 4.1, 4.2 and 4.3 all establish deviations between observed dependence and
causal effect bounded by I(Z : X) (keep in mind that in our scenario CZ→X = I(X : Z)).

98



Chapter 4. Approximate causal inference by bounding confounding in i.i.d. settings

Plugging them together with Inequality 4.6, we obtain the following bounds:

I(X : Y )− CX→Y ≤ log (|dom(X)|) p(W=1), (4.7)

I(X : Y )− I(X → Y |doZ) ≤ log (|dom(X)|) p(W=1), (4.8)

D(p(Y |X)‖p(Y |doX)) ≤ log (|dom(X)|) p(W=1). (4.9)

4.5.2.2. Advertisement letter example: partial randomization by partial
compliance

A common application field of causal inference within decision making is advertisement
[Brodersen et al., 2015]. There, the decision is about say a potential ad campaign, and
the goal is formulated w.r.t. benefits from subsequent client behaviour as well as say
costs of the ad campaign. To inform the decision, it is important to have an idea of the
causal effect of the ad campaign on the subsequent behaviour of (potential) clients.

In ideal scenarios, methods like the back-door criterion (Section 2.1.3.2) or even methods
which do not explicitly talk about causal semantics, such as multiarmed bandits, are
applicable [Bottou et al., 2013]. In contrast, here we consider a toy scenario where only
an insufficient set of variables is recorded, but some additional knowledge – about partial
compliance – can be integrated to approximate the causal effect, based on Section 4.5.2.1
above.

Example 4.1. Assume we are managers of a mail order company and want to know
the effect of sending advertisement letters on the ordering behavior of the recipients, to
inform our decision making regarding advertisement campaigns. We have a data set of
(X, Y ) pairs with X ∈ {0, 1} denoting whether a letter was sent to a specific person and
let Y denote the total costs of the products ordered by this person afterwards (while we
assume the identity of the person not to be recorded). Suppose we have enough data to es-
timate p(X, Y ). Furthermore, assume that so far there were already imperfect guidelines
based on rough intuition on whom to send letters and whom not. These guidelines intro-
duce a potential confounder Z since letters were more likely send to potential customers
with properties that made them also more likely to order something (if the guidelines
were not complete nonsense). More specifically, Z could denote the recommendation for
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a specific customer based on the guidelines. But we assume that Z was not recorded (for
instance because we as managers were not familiar with causal inference before).

It is known however that only some employees followed these guidelines/recommendations.
Let W denote whether a letter was sent out in compliance with these guidelines (W = 1)
or not (i.e., was send out more or less randomly). Based on an estimate of how many
employees complied with the guidelines, we also have an estimate of p(W = 1), i.e. the
fraction of letters that was sent out in compliance with the guidelines. Based on Propo-
sition 4.1, we know that I(Z : X) ≤ log (|dom(X)|) p(W=1). Hence we have an upper
bound on the back-door dependence of Y on X. In particular, we can apply Inequalities
(4.7) to (4.9) and, under strong additional assumptions, the result w.r.t. the average
causal effect from Section 4.4.3.1.

For example, by (4.7) we have I(X:Y ) − log (|dom(X)|) p(W=1) ≤ CX→Y . Since X is
binary, we have log (|dom(X)|) = 1 (we assume the logarithm in information theoretic
quantities to be w.r.t. basis 2 here). Furthermore, p(W=1)≈0.5 (only half the employees
followed the guidelines). Then, if we observe a strong dependence of Y on X, say
I(X:Y )≈0.75, we can conclude that CX→Y&0.25, i.e. our advertisement letters have a
significant effect on the potential customers. If one wants to know more about precisley
how the effect looks like, one could apply Inequality 4.9.

It is important to emphasize, that here we utilized partial compliance with guidelines
for causal inference, while in other scenarios, another form of partial compliance may
complicate causal inference – see the IV design (Section 4.2 and discussion below). Fur-
thermore, note that in this simple example we only considered the causal effect of ad
letters on the whole population; as a next step, one would use additional information
about the recipients (which the imperfect guideline mentioned above already may have
done).

4.5.2.3. Difference to instrumental variable design

We already mentioned the instrumental variable design [Pearl, 2000] in Section 4.1. In
this design it is assumed that an additional variable W is observed such that the causal
structure of all variables together is as depicted in Figure 4.3, except that W is not
hidden. The prototypical application scenario for this design are clinical trials with
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partial compliance. Pearl [2000] describes a method to derive bounds on the average
causal effect E(Y |doX=1)−E(Y |doX=0). This analysis heavily depends on the range
of X, Y , and W and involves convex optimization in a 15-dimensional space already for
the case where all variables are binary (since Z can be assumed to attain 16 different
values).

The advantage of our approach lies in the fact that the ranges of the variables may be
arbitrary without increasing the complexity – for the cost of getting less tight bounds
than an explicit modeling, of course. One can get bounds for the case where neither X
nor Y are binary, e.g., in a drug testing scenario with different doses and descriptions of
health conditions that are more complex than just reporting recovery or not. Moreover,
we do not need complete knowledge of p(Y,X|W ) provided that we have some knowledge
on W that provides upper bounds on I(X:Z).

4.5.3. A variant of the regression discontinuity design

We already mentioned the regression discontinuity design (RDD) [Thistlewaite and
Campbell, 1960, Imbens and Lemieux, 2008, Lee and Lemieux, 2010] in Section 4.2.
It is a quasi-experimental design that can help to estimate the causal effect from X

to Y in cases where an additional variable W is measured and the underlying causal
DAG of all variables together is as depicted in Figure 4.4. The design usually requires
that X is a deterministic function of W that contains a discontinuity, that all remaining
structural equations are linear, and that E(Z|W = w) is continuous in w. (Note that the
causal DAG in Figure 4.4 is a special case of the general confounding scenario depicted
in Figure 4.2, which can be seen by replacing Z in Figure 4.2 by Z ′ := (Z,W ).)

We now consider a scenario inspired by the RDD, which allows to bound the back-door
dependence in the sense of Section 4.4.6 and thus makes Theorem 4.7 applicable to
estimate the causal effect ∂2E(Y |X=x, doX=x), i.e. the differential effect of treatment
on the treated. The scenario differs from the RDD in that neither a discontinuity in
the structural equation for X, nor linearity of the remaining structural equations is
required.
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YXW

Z

Figure 4.4.: The causal DAG for the RDD and our variant of it.

Assume the causal DAG in Figure 4.4. Furthermore assume that X = fX(W ) for a
function fX that is differentiable. (This is the point where our scenario differs from
RDD.) Suppose fX is invertible, g := f−1

X . It can easily be seen that this implies

∂1E(Y |X=x, doX=x) = ∂1E(Y |W=g(x), doX=x)g′(x). (4.10)

Note that ∂1E(Y |W=g(x), doX=x) means the derivative of E(Y |W=w, doX=x) w.r.t.
w at position (g(x), x). Applying Theorem 4.7 yields

dxE(Y |X=x)− ∂2E(Y |X=x, doX=x) = ∂1E(Y |W=g(x), doX=x)g′(x).

Hence if for any position x0 of X we assume a bound on the strength of the “back-door”
dependence of Y on W , ∂1E(Y |W=g(x0), doX=x0), and if |g′(x0)| is comparably small
(which is the case when |f ′X(g(x0))| is big), then we can bound the difference between
observed dependence and causal effect at position x0.

For instance, if we consider the observed dependence dxE(Y |X=x) as a realistic scale
based on which one can constrain ∂1E(Y |W=g(x), doX=x), formally

|∂1E(Y |W=g(x), doX=x)| ≤ c|dxE(Y |X=x)|,

for some c, then one can bound the modulus of the causal effect from below:

|∂2E(Y |W=g(x), doX=x)| ≥ (1− c|g′(x)|)|dxE(Y |X=x)|.
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Obviously, one weakness of the above argument is that the estimation of the causal effect
heavily depends on the bound that we assume w.r.t. the “back-door” dependence of Y
on W , ∂1E(Y |W=g(x), doX=x). However, this can be seen as a quantitative analogon
to the qualitative assumption of the RDD that E(Z|W = w) is continuous in w.

Keep in mind that our results on Fisher information (Section 4.4.4) can be used in the
case where X is not a deterministic function of W that changes rapidly but instead the
conditional probability p(X|w) changes fast at some w = w0.

4.6. Conclusions of this chapter

In this chapter, we tried to take a step towards a general formalization of methods that
lie between randomized experiments and observational studies. Rephrasing the basic
idea, we integrated settings with a bounded “deviation from perfect experiments”. We
gave some examples of such settings and showed how they imply bounds on confounding
(Section 4.5). And we showed how such bounds on confounding imply approximations
to the true causal effect we are interested in (Section 4.4).
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Chapter 5.

Decision making in cloud computing
via approximate causal models

5.1. Introduction

In Chapters 3 and 4, we mainly focused on integrative and approximative learning of
PCMs with only a small digression to decision making in Chapter 4. The investigation
took place on a rather abstract level, meaning that it was not motivated by specific prob-
lems from specific domains, but rather we tried to develop approaches that in principle
can be applied to all possible domains (that satisfy the respective conditions).

In contrast, in this chapter the main focus is on decision making using PCMs, while
learnig of PCMs is discussed only briefly, as illustrated by Figure 5.1 on page 105.
Furthermore, the investigation is driven by rather specific technical and economical
problems in cloud computing [Armbrust et al., 2010]. Cloud computing is a computing
paradigm as well as a business model that has become increasingly popular in recent
years. It allows to rent computing resources on-demand, and to use them efficiently by
sharing them in a smart way, in particular using auctions to sell unused resources.

For the first time within the main part of this thesis, here we will use the notions of
counterfactuals and transportability, which can be defined based on PCMs (although
we already mentioned counterfactuals in the introductory Section 2.1.5). Similarly to
Chapter 4, a focus will be on approximations.
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decisioncausal modelsystem itself/
prior knowledge

Chapter 3:
Chapter 4:
Chapter 5:

Figure 5.1.: The content of this chapter illustrated in black, relative to the rest of this
thesis in gray, and the overall “inference path” in red.

Keep in mind that this chapter is made up of initial ideas rather than fully elaborated
approaches. Nonetheless, most notably Section 5.5 goes into a direction – approximate
causal reasoning for economic decision making problems – which seems promising.

Parts of this chapter are based on the pre-prints [Geiger et al., 2016b] and [Geiger et al.,
2016a].

5.1.1. Problem outline

Several new challenges arise from the paradigm of cloud computing. On a technical
level, it is a problem to understand, control and debug the involved computing systems
up to the size of several data centers, with as much automation as possible, to make
them behave in a desired way. We will go into more detail on this in Section 5.4.1. On
an economical level, while auctions for “spot” resources help providers to use resources
more efficiently, the unpredictability of their prices and performance complicates bidding
and buying decisions for clients. We will go into more detail on this in Section 5.5.1.

In the absence of exact models, it is natural to try to address such problems using data-
driven methods [Padala et al., 2009, Ostrowski et al., 2011, Snee et al., 2015, Chiang
et al., 2014, Zheng et al., 2009]. However, standard machine learning usually applies in
settings where the underlying system is invariant, often based on the assumption that
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samples are i.i.d., and does not make predictions about the effect of interventions, which
is important though for debugging, control and integration of heterogeneous data.

5.1.2. Contributions

The present chapter thus takes first steps towards addressing challenges of cloud comput-
ing using causal models. Inferring causal models from (observational) data is notoriously
hard, and convincing applications of causal modeling to real world problems are scarce.
The present chapter is no exception in that the main focus is conceptual rather than
empirical. Our main contributions are:

• We present two theoretical results for approximations in causal modeling, Propo-
sitions 5.1 and 5.2, which are of relevance for the subsequent cloud problems and
possibly beyond, in Section 5.3. It needs to be emphasized that the practicability
of these theoretical results remains to be proved.

• In Section 5.4, we suggest first steps towards causal models and approximate coun-
terfactuals as a principled approach for addressing cloud control and performance
debugging problems, integrating sandbox experiments.

• In Section 5.5, we use approximate integration of causal knowledge to enable cloud
clients to better predict performance and costs, while preserving privacy, in a toy
setting.

It needs to be emphasized again that the practical value of the two propositions and
our formalizations of the mentioned problems remains to be established. They should
be seen as a thought-provoking impulse rather than a completed contribution.

5.1.3. Structure of this chapter

The remainder of this chapter is structured as follows:

• in Section 5.3, we give a brief introduction to cloud computing;
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• Section 5.3 contains the definition of counterfactuals (in addition to our two the-
oretical results);

• Section 5.6 contains simplistic real-world and simulated experiments for our two
approaches, as well as a preliminary causal model of a more realistic cloud system;

• in Section 5.7, we discuss related work;

• and we conclude the chapter with Section 5.8.

5.2. Background in cloud computing

Traditionally, both businesses and individuals have used dedicated local computers, or
computer networks, for storing, managing and processing data. However, this can be
inefficient in several ways: the overhead of maintaining such an infrastructure is high,
and one needs to buy enough computers to handle peak loads, while during normal
operation most will remain unutilized

Cloud computing significantly changes this, by allowing computing resources to be rented
on demand. A company, the cloud provider, is now responsible for running all the hard-
ware, keeping it upgraded and sharing it amongst multiple clients. Such an infrastructure
can be run in a highly efficient manner: tens or hundreds of virtual machines (VMs), i.e.,
emulations of computer systems, chartered by different clients, run on a single physical
server and share its resources such as central processing units (CPUs), memory and
network. Note that we refer to a system as being in production, if this system does
actual work for clients and visitors, and if contracts have to be met w.r.t. this system
(in contrast, e.g., to an experimental system).
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5.3. Two approximations in causal modeling

5.3.1. Structural counterfactuals and an approximation

Let M0 be an FCM over a set V of variables, and let U denote the set of independent
background variables in M0 (as described in Definition 2.1). Let E,X, Y be (sets of)
variables in V . The structural counterfactual probability of Y being y, had X been x,
given evidence E = e, can be defined [Pearl, 2000] based on M0 as1

p(YdoX=x = y|e) :=
∑
u

p(y|do (x), u)p(u|e). (5.1)

Even though computer systems are “more deterministic” than many other systems, due
to interactions with the environment and missing information, one usually can only
infer a GCM, and not an FCM, of a computer system. Without an FCM though,
counterfactual probabilities (Equation (5.1)) are generally not uniquely determined, i.e.,
they cannot be derived from a GCM. Let us give an example.

Example 5.1 (GCMs do not determine counterfactual probabilities). Let V = {X, Y }
for binary X, Y , and consider the GCM M with DAG X → Y and conditionals pX(0) = 1

2

and pY |X(0|x) = pY (0) = 1
2 . M is induced by two very different FCMs. On the one hand,

the FCM M0 with structural equations

X := UX ,

Y := UY ,

and UX ∼ UY ∼ Uniform({0, 1}), where Uniform({0, 1}) denotes the uniform distri-
bution on {0, 1}, induces M (see Remark 2.1 for what we mean by “induce” here). On
the other hand, the FCM M ′

0 with structural equations

X := UX ,

Y := X XOR UY ,

1Note that [Pearl, 2000] in his definition uses functions instead of (deterministic) conditionals.
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and UX ∼ UY ∼ Uniform({0, 1}) induces M . But in M0 we have

p(YdoX=1 = 0|X = 0, Y = 0)

=
∑
uY

p(Y = 0|doX = 1, uY )p(uY |X = 0, Y = 0)

=
∑
uY

p(Y = 0|uY )p(uY |X = 0, Y = 0)

= 1 · 1 + 0 · 0 = 1,

while in M ′
0 we have

p(YdoX=1 = 0|X = 0, Y = 0)

=
∑
uY

p(Y = 0|doX = 1, uY )p(uY |X = 0, Y = 0)

=
∑
uY

p(Y = 0|X = 1, uY )p(uY |X = 0, Y = 0)

= 0 · 1 + 1 · 0 = 0.

This gives an extreme example of counterfactual probabilities not being determined by a
GCM.

For a more detailed discussion of this phenomenon we refer the reader to [Peters et al.,
2017].

Now we show that nonetheless counterfactual probabilities can be calculated approxi-
mately, and one can know, from only the GCM, how wrong the approximation is at most
– on average. This will be important for our approach to debugging in Section 5.4, and,
as we belief, for other areas as well.

Let M be a GCM and let Z be the set of its root variables (variables with no parents
in the causal DAG). For any (sets of) variables X, Y,E in M we define the approximate
structural counterfactual or approximate counterfactual as2

p̃(YdoX=x = y|e) :=
∑
w

p(y|do (x), w)p(w|e), (5.2)

2The idea of a counterfactual definition based on only the GCM has been mentioned in [Pearl, 2000,
Section 7.2.2], but not been further investigated. Depending on the specific setting and the available
information, there may be more suitable approximations to encode counterfactual-like probabilities.
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where W := Z \X.

Proposition 5.1. Let M0 be an FCM that induces a GCM M , and let Z denote the
root variables in M . For all (sets of) variables E,X, Y we have

D(p(YdoX=x|E)‖p̃(YdoX=x|E)) ≤ H(E|Z), (5.3)

where p(YdoX=x|e) is defined w.r.t. M0 and p̃(YdoX=x|e) w.r.t. M .

We prove (using monotonicity of the KL divergence and properties of entropy) a gener-
alization of Proposition 5.1 – Proposition C.1 – in Section C.1.3

Example 5.2. To give some intuition about the approximate counterfactual and the
proposition, let us first consider the following two special cases: If M is already an
“FCM” in the sense that all its variables are completely determined by the root nodes,
then we have H(E|Z) = 0, and thus, based on Equation (5.3), both quantities coincide,
which seems natural. If the evidence comprises the root nodes, Z ⊂ E, then the ap-
proximation amounts to the simple conditional p(y|do (x), w) (where w is the part of e
the corresponds to W ), similar as if we had evidence on all background variables in an
FCM.

Note that for the M in Example 5.1, the approximate counterfactual does not help much.
It can be calculated as

p̃(YdoX=1 = 0|X = 0, Y = 0) = p(Y = 0|do (x)) = p(Y = 0) = 1
2

As is easy to see, this implies the KL divergence between p̃(YdoX=1|X = 0, Y = 0) and
the true p(YdoX=1|X = 0, Y = 0) under both, M0 and M ′

0 of Example 5.1, to be 1. This
KL divergence coincides with the upper bound to the KL divergence in Proposition 5.1,
since H(X, Y |Y ) = 1 in Example 5.1.

The practical meaningfulness of the approximate counterfactual probability, in particular
for decision making, remains subject to debate. We will briefly comment on it in Remark
5.1 below.

3Note that, if we chose the set Z in Proposition C.1 such that it is as “close” (in the causal diagram)
to Y as possible, this could yield better approximations than simply letting Z be the root nodes, as
done in p̄(Ydo X=x = y|e). We leave this as a question for future work.
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5.3.2. Approximate integration of causal knowledge

The following result will be important for Section 5.5 since it can be used to preserve
some amount of privacy. Consider random variables C,X0, . . . , XK , Z. A typical causal
structure which satisfies the assumptions we make below is depicted in Figure 5.5 on page
125. Here we introduce what can be seen as an approximation to “transportability”, as
introduced by Bareinboim and Pearl [2012], in the following simple case: we would like
to know p(z), we do know the mechanism p(z|x0, . . . , xK) plus, from a different source,
p(xk, c) for all k, but we do not know p(x0, . . . , xK). Define the approximation

p̄(z) :=
∑

x0,...,xK ,c

p(z|x0, . . . , xK)
∏
k

p(xk|c)p(c). (5.4)

Proposition 5.2. If Z ⊥⊥ C|X0, . . . , XK, then D(p(Z)‖p̄(Z)) ≤ ∑k H(Xk|C).

Note that based on the proposition, again, we can know how wrong the approximation
is at most, using only the available information p(xk|c), p(c). A proof (again using
monotonicity of the KL divergence and properties of entropy), can be found in Section
C.2.

Example 5.3. To get an intuition, consider the case that all Xk are fully determined
by C: then p̄(z) and p(z) coincide, which is reflected by ∑k H(Xk|C) being 0. As already
mentioned, an example of a causal model which implies the condition of the proposition
is depicted in Figure 5.5 on page 125.

While here we apply the proposition for a predictability-privacy problem in Section 5.5,
it is more generally applicable where joint distributions are not available. In particular,
while in Section 5.5 we will focus on approximate integration for privacy reasons, an
even more frequent reason may be that only (insufficient) marginals are known. Keep in
mind that stronger statements on the set of possible p(z) under the available information
may exist, e.g., based on ideas in Balke and Pearl [1994].
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5.4. Problem 1 – models for control and debugging –
and our approach

We start with the problem statement (Section 5.4.1), followed by our approach (Section
5.4.2). Then we illustrate our approach in detail based on several toy scenarios and
discuss advantages over previous work (Section 5.4.3).

5.4.1. Problem statement

Cloud computing involves technical systems of the highest complexity, which have to be
controlled and debugged, ideally in a (semi-)automatic way. More specifically, the control
problem can be stated as follows: During the operation of a cloud server many “decisions”
automatically have to be made regarding how resources, such as complete computers,
or parts, such as CPU time, are allocated among the various applications or virtual
machines (VMs) of clients. The goal is to optimize this automatic decision making,
based on some given utility function, encoding, e.g., energy consumption, guarantees
given to customers, or simply profit.

The (performance) debugging problem (closely related to “performance attribution”)
can be formulated as follows: the general goal is to understand which component of
a system contributes to what extent to the measured performance. Based on this, it
can be decided which components have to be modified to improve the performance. To
give an example, a cloud computing client may wonder whether the high latency of his
web server is caused from concurrent programs within his VM (which he could directly
intervene), or by other, concurrent VMs on the same physical cloud sever. We will
come back to this example in Section 5.4.3, where we address a toy scenario, as well as
Section 5.6.2, where we give an example of a preliminary but realistic causal model that
can help in such a situation. Note that we presently focus on debugging for individual
observations, i.e., on the unit-level (see also Section 2.1.5).

Usually, plenty of heterogeneous knowledge and data is available about the involved
systems: expert knowledge, formal program code and system specifications (often con-
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taining non-causal associational knowledge), data from the very system or similar ones,
and data from sandbox experiments.

5.4.2. Outline of an approach

We now sketch several steps of a unified approach based on causal models, which can
potentially help to address the control and the debugging problem. In what follows, we
will refer to the cloud system “in production”, i.e., the fully configured system with a
specific set of applications, as the “target system”. Note that, depending on the specific
setup, some steps may be canceled.

5.4.2.1. Step 1A: inference of causal diagram and some mechanisms

Given: the various information sources described below.

Procedure: Keep in mind that the inference procedure we describe here is usually not
based on the target system itself, since some details of it (such as the specific VMs
running on it) are varying quickly, but instead on past experience with other systems
of equal or similar configuration. In particular, usually not all details of the target sys-
tem are known during this step, so that some mechanisms stay underdetermined, but
can be inferred later during Step 1B. As usual, the main sources for causal inference
are randomized interventional experiments, observational data (deploying observational
causal inference methods 2.1.3.2) and expert knowledge. A necessary condition to har-
ness the first two sources is the decision about - and performance of - measurements of
the system, for which we propose to use tools discussed by Carata et al. [2014], Snee
et al. [2015].

Note the important fact that many aspects of computer systems (hardware and soft-
ware) are - by design - modular, i.e., separable into individually manipulable input-
output mechanisms, which is a central assumption in causal models, as we mentioned in
Section 2.1.5. To give a simple example: to see if erroneous behavior is caused by the
network, one can unplug the network cable and check if the error occurs nonetheless –
a procedure which generally would not change any other mechanism, such as the CPU
or keyboard. Furthermore, the same (or similar) mechanisms occur in different systems,
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which is very helpful for extrapolation from experiments. Note that there is an addi-
tional source of information which is specific to computer systems: a lot of knowledge
about non-causal associations, such as which program calls which other program dur-
ing execution, is available, often in a well-formatted way (e.g. program code or system
architecture specifications). Such information could be translated into hypotheses on
causal association (or be used for measurement selection), in a (semi-)automatic way.

The output of this procedure is a causal diagram G of the target system, together with
those mechanisms, i.e., conditionals in the causal model M of the target system, which
can be inferred based on past experience. For those mechanisms which cannot be known
based on past experience, but only when the target system is revealed (e.g., the specific
VMs running on it), but which cannot be explored directly on the target system either
(since tentative configurations may violate contracts with clients [Chiang et al., 2014,
Zheng et al., 2009]), we discuss the integration of sandbox experiments in Step 1B below,
which should then complete the causal model M .

5.4.2.2. Step 1B: design and integration of sandbox experiments

Given: an additional cloud system, the “experimental system”, equivalent in hardware
to the target system, the causal diagram G of the target system, some variable X (e.g.
performance of some VM) in G, and the identity (e.g., VM) but not all properties of the
mechanism that produces X, and whose unknown properties should be inferred during
the experiment.

Procedure: The knowledge of G allows to integrate sandbox experiments in a principled
way:

1. Derive all direct influences of X from G, i.e., the parents PAX (which could include
resources such as CPU time or size of requests received from the internet).

2. Design the sandbox experiment on the experimental system such that (1) the
experimental system has the same conditional p(x|paX) as mechanism for X (e.g.,
by simply running the same VM on the experimental system as is planned to run
on the target system) and (2) all variables in PAX are randomly varied.
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3. Based on the gathered data, regress X on PAX and plug the inferred conditional
p(x|paX) = p(x|do paX) as mechanism for X into M . This is possible since all
parents of X were “intervened” and regressed upon.

Without going further into detail, it needs to be mentioned that the transfer of the
conditional between experimental and target system can be seen as a simple example of
“transportation” of causal relations as defined by Pearl and Bareinboim [2011b].

5.4.2.3. Step 1C: control

Given: causal model M of the target system, some utility u, which is variable in M

or a function of one or several variables in M , and some variable X (e.g. concurrent
workload, CPU time, network bandwidth) in M , which should be controlled such as to
optimize u (or p(u)).

Procedure: As M predicts the effect on u of modifying any of its mechanisms, it can be
used to find the mechanism, or “policy”, p(x|paX) = π(x|paX), which maximizes u.

5.4.2.4. Step 1D: observation-level performance debugging

Given: causal model M of the target system, a variable Y in M that measures the
performance, a performance debugging query Q, and an (individual) observation Y =
y, F = f , where F contains all observables besides Y . (Since we move on the level
of individual observations instead of populations, we term this step “observation-level
performance debugging”.)

Procedure: For the performance debugging query Q, we assume the following form: “In
the current situation, would it improve performance Y from the current y to y′, if we
would set X to x′, given side information F = f?” The side information f may contain
an observation x of X. Stated this way, it seems natural to translate this query into a
query for the structural counterfactual probability p(YdoX=x′ = y′|y, f).4 Then, based
on Section 5.3.1 and in particular Proposition 5.1, we can calculate the approximate

4Clearly, there are other ways to formalize attribution and debugging.
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answer p̃(YdoX=x′ = y′|y, f) from the GCM M , if H(E|Z) is small, where Z is a set of
root nodes.

Remark 5.1 (The value of (approximate) counterfactuals for performance debugging).
A remark is due regarding the notion of a counterfactual and its application to perfor-
mance debugging. In the narrow sense, a counterfactual statement is always a statement
about the past and so it is neither falsifiable, nor can it help for any (falsifiable recom-
mendations regarding) future decision.

In contrast, here we have in mind a broader notion of a counterfactual: a situation where
one observes a system with a poor performance and asks how the performance could be
debugged when the system remains in the “same” state, or visits the same or similar
states again. (In the language of causal models, “state” means the tuple of background
variables.) This question is relevant in situations where the debugging action can be
performed quickly after the observation of poor performance, and where ones assumes
that the state changes comparably slowly, i.e., the state varies smoothly with time.5

Alternatively, the question can be relevant if one has a good “subjective” judgement
about the similarity of the state between two points in time – if the judgement is based
on pbjective observables though, a non-counterfactual form of reasoning may be more
appropriate.

Situations where counterfactual reasoning may be useful arise, in particular, whenever
one does not assume to “know” the population-level distribution of the state well enough
(but one beliefs in the structural equations), for instance, because it varies with time,
and instead one wants to reason on the observation-level, i.e., unit-level. Because on the
population-level, there are better ways for decision making than counterfactual reasoning,
see Step 1C.

We propose one way to formalize performance debugging questions, and to answer them,
based on one possible formalization of counterfactual probabilities proposed by Pearl
[2000]. It remains an open question whether there are better formalizations than ours for
the debugging questions we consider, and whether the general notion of a counterfactual
probability, as well as its formalization by Pearl [2000], are sensible. For a discussion,
see also [Peters et al., 2017].

5It seems that a more thorough analysis of this argument might be fruitful, as it could theoretically
justify the frequent usage of counterfactual reasoning in everyday life. We leave this to future work.
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Note that an additional issue, which we are not able to settle here, is how close our
approximation of a counterfactual comes to the true counterfactual in practice.

5.4.3. Application to toy scenarios and discussion of potential
advantages over previous approaches

For researchers familiar with causal inference, some of the steps described above may
seem trivial. However, all current approaches to the described problems we are aware of
are lacking a principled (formal) language, with concepts such as causal sufficiency, for
such things as integration of sandbox experiments and performance debugging.

We will now give toy examples to make the approach outlined in Step 1B through Step
1D more concrete, and simultaneously show the advantages of our approach based on
causal models over some previous approaches. (For examples of applications of Step
1A, see Sections 5.6.1 and 5.6.2.) Keep in mind that, clearly, the approach we outlined
does not completely solve the problem: the inference of knowledge it relies on remains
a challenge as with all other approaches. However, our approach may be less prone to
errors and more data-efficient.

• Step 1B: Integrating sandbox experiments without a principled approach [Chiang
et al., 2014, Zheng et al., 2009], can lead to errors: e.g., if not all parents (direct
causes) of a variable X are varied during the experiment and regressed upon after-
wards or, say, X is regressed on its causal children. Any methodology that does
not include reasoning about concepts such as causal effect, causal sufficiency or
randomization is prone to such mistakes. Let us give a toy example of how our
approach works for sandbox experiments, and how other approaches can go wrong
in terms of variation and regression.

Example 5.4 (Design and integration of sandbox experiments, and possible mis-
takes). Imagine we are the cloud provider and we want to decide whether we can
put some VM A on some cloud server, where already other concurrent VMs are
running. Let L ∈ {0, 1} denote the performance of (the main application running
inside) A, with L = 0 denoting good, and L = 1 bad performance. For instance,
L could denote some latency. Assume that Figure 5.2 depicts the correct causal
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L

R S

H

Figure 5.2.: Causal diagram when running VM A on the target system. Not varying
or regressing on S during the sandbox experiment can lead to wrong predictions of
performance L on the target system, especially when some hidden source H (say internet
users) introduces strong correlations between R and S.

DAG of the target system, i.e., when A would be running on the mentioned cloud
sever. In particular, the performance depends on two factors, say amount of re-
quests R ∈ {0, 1} coming into A from the internet, on the one hand, and usage
S ∈ {0, 1} of the CPU of the cloud sever by the concurrent VMs, on the other,
where 0 stands for “low” and 1 for “high”. And in turn, R, S depend on H which
may denote the state of the internet users, which send requests to A but potentially
also to concurrent VMs and therefore also influence S. (Alternatively, H could de-
note a parameter for the behaviour of the internet users, i.e., for the distribution
of their states.)

Assume the true mechanism underlying L to be

L := R AND S,

where AND denotes the logical “AND”. I.e., the performance is bad iff A has to
serve many requests (R = 1) and at the same time CPU usage by concurrent VMs
is high (S = 1). Furthermore, assume that on the target system, we have R ≈ S.
For instance, this could be due to the fact that A and concurrent VMs serve internet
users in the same time zone. Additionally, assume p(R = 0) = p(S = 0) = 1

2 .

Suppose we have inferred the causal DAG in Figure 5.2 based on Step 1A. We now
want to infer the mechanism underlying the performance L, so, following Step 1B
(taking L as X), we would perform a sandbox experiment where we would vary
both, R and S, and afterwards regress on both, R and S. We would correctly infer
the mechanism L := R AND S. Additionally knowing p(r, s) (say from previous
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experience, or from reports by the cloud clients) we would correctly predict the
probability of bad performance of A on the target system, p(L = 1), to be

∑
r,s

p(L = 1|r, s)p(r, s) = 0 · 1
2 + 1 · 1

2 = 1
2

In contrast, without such a principled approach, two things can happen.

If in the sandbox experiment, only R is varied and regressed upon, while S is
kept to a constant 0 (because it was not properly inferred or communicated as an
influence factor, or simply because on the experimental system no concurrent VMs
are emulated), then p(L = 1) would be wrongly predicted as

∑
r

p(L = 1|r, 0)p(r) = 0 · 1
2 + 0 · 1

2 = 0.

And even if in the sandbox experiment, S would be varied according to the correct
p(s) on the target system (e.g., because the concurrent VMs of the target system
would be emulated well on the experimental system), but if one would forget about
regressing on S, then still one would wrongly predict p(L = 1) to be

∑
r

p(L = 1|r, s)p(r)p(s) = 0 · 1
4 + 0 · 1

4 + 0 · 1
4 + 1 · 1

4 = 1
4 .

Clearly, this was only a simplistic toy example, but to the best of the knowledge of
the author, such problems have not been thematized in the literature [Chiang et al.,
2014, Zheng et al., 2009] yet.

• Step 1C: Causal models provide a principled tool for control of cloud systems
that allows to integrate various forms of information, such as results of sandbox
experiments obtained in 5.4.2.2. Furthermore, compared to, e.g., [Padala et al.,
2009], which is based on adaptive control, an advantage of using causal models is
that they allow to encode and integrate knowledge about which mechanisms vary
and which stay invariant.
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L

SR

H

π

Figure 5.3.: Causal diagram when running A on a system controlled by policy π. It is
similar to the system in Figure 5.2, except that now S is influenced by the choice of the
policy (as well as the current R which serves as an input to the policy), and therefore
we add π to the diagram and draw an arrow to S. Note that handling the policy, which
is rather a parameter than a variable, in such a way is similar to the use of so-called
“selection diagrams” in Pearl and Bareinboim [2011b], where the mechanisms that vary
are marked by special nodes with arrows to them.

Example 5.5 (Control based on causal models). Consider A, the same VM as in
Example 5.4, with performance L. Recall that there we inferred the mechanism for
L to be L := R AND S.

Now assume that we consider a different target system than in Example 5.4,
namely, a system that involves a policy π(r|s) that controls the amount S of CPU
that is occupied by VMs other than A. We depict the causal DAG in Figure 5.3.

Suppose the goal is as follows: keep the probability of poor performance below 1
2 , i.e.,

p(L = 1|π) ≤ 1
2 , while allocating as little CPU as possible to A, i.e., minimizing

p(S = 0|π) (so that more CPU can be used by other VMs). Furthermore, assume
p(R = 0) = 1

2 , as in Example 5.4.

Using the causal DAG and “plugging in” our knowledge of the mechanisms, it is
easy to see that the optimal policy is π(S = 1|r) = 1, i.e., always occupy the CPU
by other VMs. Because then

p(L = 1|π) =
∑
r,s

p(L = 1|r, s)π(s|r)p(r) (5.5)

= p(L = 1|0, 1)1
2 + p(L = 1|1, 1)1

2 (5.6)

= 0 + 1
2 = 1

2 (5.7)
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so the goal w.r.t. performance L is still met. This shows how causal models provide
a principled tool to integrate sandbox experiments, based on Step 1B, to perform
control, as proposed in Step 1C (the S here corresponds to the X there).

Let us mention a potential advantage of control based on causal models in case
cloud systems are time-varying. Assume H denotes a parameter for the behavior
of the internet users (we indicated this meaning in Example 5.4.2.2). Suppose H
varies for some reason, say due to an ad campaign, in an unpredictable way. We
know that the behavior of the internet users influences L only via R, since the rest
of the cloud system is not affected by the internet. This knowledge is encoded in
the causal DAG in Figure 5.3. Based on this, we have

p(l|r, s, h) = p(l|r, s).

So we have formally reasoned that even if H varies, the mechanism p(l|r, s) stays
the same. Hence, to derive the new optimal policy π, all one has to do is to infer
the new p(r) and plug it into Equation 5.5 (and optimize for π). Furthermore, we
can be certain that we identified the new system and the new optimal policy (given
our assumptions are correct). This sort of reasoning has been analyzed, on a more
general level, by Pearl and Bareinboim [2011b] (but they do not apply it to control
settings).

In contrast, approaches to (adaptive) control for cloud computing which are not
based on modularity and such reasoning [Padala et al., 2009] may try to infer the
complete information, p(r) as well as p(l|r, s), from scratch upon a variation of
H, assuming it to be a completely new “environment” (recall Section 2.1.5 where
we discussed the connection between causation and modularity). And even if such
approaches utilize the invariant p(l|r, s) after a variation of H in one way or an-
other, they are usually missing the language to reason about the identifiability of
the new system (after the variation in H), as we did above based on causal models.

It needs to be emphasized that here we considered an overly simplistic scenario. In
more complex and realistic scenarios, there are much more mechanisms involved
that could potentially vary or stay invariant, respectively. See Section 5.6.2 for an
example of a causal DAG of a more realistic but still simple cloud system.
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L

R S

Figure 5.4.: Causal diagram for observation-level performance debugging in a toy setting.
S is unobserved, but nonetheless we assume p(l|r, s) to be known, may it be that the
provider publishes it, or the client knows it from own (sandbox) experiments.

• Step 1D: We now give en example for how observation-level debugging can be
performed based on Step 1D. This approach can be seen as complementary to
other methods for this problem [Ostrowski et al., 2011], where errors may arise
from confusing causation with correlation, or where it is more difficult to integrate
heterogeneous knowledge such as sandbox experiments.

Example 5.6 (Observation-level performance debugging). Note that, while this
is a toy scenario, the assumptions we make in this example regarding what is
known/observed and what not are close to realistic [Snee et al., 2015].

Similar as in Example 5.4, consider a VM with performance (latency) L running
on a cloud system, with R ∈ {0, 1} denoting the amount of incoming requests, and
S ∈ {0, 1} the amount of, say, CPU time allocated to concurrent VMs (0 stands for
“low” and 1 for “high”). Here, denote the VM by B. In contrast to Example 5.4,
assume the causal DAG depicted in Figure 5.4. Furthermore, let L ∈ {0, 1, 2, 3}
and the structural equation for L be given by

L := R + S + UL, (5.8)

with p(UL = 0) = 1
2 . Suppose p(S = R) = p(S = 0) = 1

2 , where p(S = 0) = 1
2 may

be seen as encoding some prior belief.

Now assume that the client whom B belongs to wonders, whether it would improve
the latency L to a desired 0 in the current situation where she observes L = 2, R =
1, if she decreased the amount of incoming requests to a lower level, i.e., if she set R
to 0. (Note that “current situation” can include the nearby future, if the unobserved
variables vary comparably slowly, see Remark 5.1.) She does not observe S due
to neither the cloud provider nor other clients publishing this information. This is
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a realistic assumption in cloud computing. Based on Step 1D, she translates this
question into a query for the counterfactual probability p(LdoR=0 = 0|R = 1, L =
2).

Suppose that while S is not published, p(l|r, s) is known, may it be that the provider
publishes it, or the client knows it from own (sandbox) experiments. That is,
p(r), p(s) and p(l|r, s) are give, but not the structural Equation 5.8 itself. Now,
although the structural Equation 5.8 would be needed to calculate the counterfactual
p(LdoR=0 = 0|R = 1, L = 2) exactly (see Example 5.1) she can calculate the
approximate counterfactual probability defined in Equation 5.2 as

p̃(LdoR=0 = 0|R = 1, L = 2)

=
∑
s

p(L = 0|doR = 0, s)p(s|R = 1, L = 2)

=
∑
s

p(L = 0|doR = 0, s)p(L = 2|R = 1, s)p(s|R = 1) 1
p(L = 2|R = 1)

= 1
4 ,

where we plugged in R, S for the set of root variables Z, which yields S as W ,
and as evidence E we took (R,L) with value (1, 2). Based on this, she concludes
that the probability that setting R to 0 helps for decreasing latency L to 0 is rather
small (in the current situation).

Note that the true counterfactual probability (Equation 5.1 in Section 5.3.1) in this
specific case is given by

p(LdoR=0 = 0|R = 1, L = 2)

=
∑

uR,uS ,uL

p(L = 0|doR = 0, uR, uS, uL)p(uR, uS, uL|R = 1, L = 2)

=
∑
uL,s

p(L = 0|doR = 0, s, uL)p(s, uL|R = 1, L = 2)

= 0 + p(L = 0|doR = 0, S = 0, UL = 1)p(S = 0, UL = 1|R = 1, L = 2)

+ p(L = 0|doR = 0, S = 1, UL = 0)p(S = 1, UL = 0|R = 1, L = 2) + 0

= 0,

which would lead to the even stronger conclusion that setting R to 0 for decreasing
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L to 0 would not work at all.

Note that the upper bound of Proposition 5.1 here takes the value

H(R,L|R, S) = H(L|R, S)

=
∑
r,s

p(r, s)H(L|r, s)

= 1.

Recall that we picked p(UL = 0) = 1
2 , i.e., rather strong noise. For less noise, the

approximation would be even better and the bound smaller.

Note that generally, one could try to learn (in the sense of machine learning) things
such as how to perform and integrate the experiment [Snee et al., 2015], but one would
always have to rely on prior assumptions, which may then be more difficult to encode.

5.5. Problem 2 – cost predictability versus privacy – and
our approach

We start with the problem statement (Section 5.5.1), followed by our approach (Section
5.5.2). Then we present a toy example (Section 5.5.3), and some additional remarks
(Section 5.5.4).

5.5.1. Problem statement

Here we consider an economical aspect of cloud computing. Currently, one common way
for clients to purchase cloud resources from a provider is via an auction mechanism for
“spot” (i.e., short-term) resources, which can be described in a simplified way as follows:
The customer enters a bid, e.g., for an hour of usage. Once the price determined by the
provider (based on supply, demand, and other private factors) drops below the bid, the
customer gets the resource, usually as long as her bid exceeds the price (within the hour).
This approach has several advantages, in particular for the provider: he can sell resources
which are unused but which fluctuate a lot (due to guarantees given to “dedicated” or
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ZY1 Y2π1 π2

X1 X2X0

W1 W2C,D

Figure 5.5.: Causal diagram G2. D is hidden.

“on-demand” customers). But clients can profit as well: the spot resources are usually
significantly cheaper than the long-term dedicated resources.

An obvious drawback of spot resources is that this kind of mechanism comes with a high
uncertainty for the clients: it is hard to tell how the prices will evolve in the future, and,
in particular, purchased resources can be terminated in an unforeseeable way, which is,
to some extent, due to the unpredictability of the other clients. Therefore, if the client
does not want to take these risks which can significantly harm his/her business, they
often avoid this mechanism.

5.5.2. Sketch of an approach

In what follows, we present a very first step towards addressing the problem based on
PCMs. We assume that there is one provider, and clients 1, . . . , K. By “stakeholders”
we refer to provider and clients together. For each point in time (say, the beginning of
an hour), let Xk denote client k’s demand for the next hour, Yk the cloud product that
the client buys from the provider, Wk the information based on which the client decides
her demand (e.g., hour of the day), which may not always be fully known though, and
πk her policy determining which cloud product Yk to buy, given her demand Xk. Let
X0 denote the provider’s pricing parameter at that time point (which may depend, e.g.,
on energy costs), and let Z denote the outcome of the provider’s mechanism applied to
the Yk. (Generally, Z can include the price as well as say termination of spot resources;
for simplicity, let it only denote the cost/price for the moment, which can comprise the
indirect costs resulting from loss of visitors through termination.)
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We assume the following simple mechanism (which is a simplified version of the auction
described above): all clients k always get the product they want, but the subsequent
price vector Z varies and is not known in advance. The causal diagram G2 for the
complete causal structure, for the case K = 2, is depicted in Figure 5.5. The role of C
will be explained below, while D denotes the hidden part of the confounder (C,D).

Our approach to the uncertainty problem, towards more predictable prices and subse-
quent reduced costs, is based on the idea that clients may not want to share all, but
are willing to share some of their information between each other. More specifically, we
propose the following two-step procedure which allows the clients to trade off privacy
versus predictability interests, by jointly picking a variable C such that p(Xk|C) allows
an approximate prediction of Z which still preserves some privacy.6

5.5.2.1. Step 1A: jointly picking C

First, all stakeholders k pick their candidates for C (possibly based on a given list and
some “privacy budget”), balancing their privacy interests against minimizing H(Xk|C).
If the intersection of their candidates is non-empty, they reveal H(Xk|C) for all k and
joint candidates C.7 They pick the C that minimizes ∑k H(Xk|C) to optimize the
predictability, based on Proposition 5.2.

5.5.2.2. Step 2B: prediction and individual decision

Now all clients k reveal their p(xk|c). p(c) is assumed to be common knowledge. Fur-
thermore, all p(yk|xk, πk) are either known a priori (based on the possible products the
provider offers) or revealed now. The provider reveals p(z|x0, y0, . . . , yK) and p(x0|c).
Now p̄(z|π1, . . . , πK) can be calculated, based on Equation 5.4. More specifically, we

6An extreme approach would be to directly infer a joint model for all clients from their joint data
(i.e., considering all clients as a “single client”). Here we assume that this is not possible, due to
heterogeneous data, privacy interests, etc.

7If the intersection is empty, the procedure is canceled without result, and the stakeholders proceed
in the classical, non-collaborative way.
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have

p̄(z|π1, . . . , πK) =
∑

x0,...,xK

p(z|x0, . . . , xK ; π1, . . . , πK)
K∏
k=0

p(xk|c)p(c)

=
∑

x0,...,xK

( ∑
y1,...,yK

p(z|x0, y1, . . . , yK)
K∏
k=1

p(yk|xk; πk)
)

K∏
k=0

p(xk|c)p(c)

Then, based on Proposition 5.2, the clients narrow down the set of possible p(z|π1, . . . , πK)
to those for which

D(p(Z|π1, . . . , πK)‖p̄(Z|π1, . . . , πK)) ≤
∑
k

H(Xk|C).

Based on this constraint on p(z|π1, . . . , πK), each client k decides on their strategy πk,
e.g., based on game-theoretic considerations.

5.5.3. Application to toy scenario

To illustrate the approach, let us give an example.

Example 5.7. A cloud provider, Clark, offers to his clients, Alice (k = 1) and Bob
(k = 2), monthly (dedicated) large resources (Yk = 2), rather expensive, or hourly spot
small (Yk = 0) and large (Yk = 1) resources, which are usually cheaper. However, if
Alice and Bob happen to both order large spot resource for the same hour, the cost for
both of them ([Z]1, [Z]2) is significantly higher than the hourly rate for the monthly large
resource, since Clark may have to buy a new resource, or he may have to cancel one
of his client’s applications, causing the loss of web site visitors. Now assume Alice and
Bob, during Step 1A, pick the hourly weather forecast, which is 0 for sunny and 1 for
cloudy, for C, since it is public information anyway that both their web sites are weather
related: Alice runs a website for outdoor activities, Bob one for indoor activities, both
in the same region. And the remaining uncertainty w.r.t. their demand (Xk being 0 for
“small” or 1 for “high”), i.e., H(Xk|C), is small. The causal diagram for this scenario
is G2 depicted in Figure 5.5. Based on this, Alice and Bob can conclude that they will
rarely require a large resource at the same time, and they can go for spot resources as
their respective (dominant) strategies πk.
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Figure 5.6.: Causal diagram G1.

5.5.4. Discussion

In some cases, the provider could infer the joint distribution of all Xk, based on past
data, which would contain all relevant information. However, the complete system is so
complex that it is unlikely to be stationary. Note that during each step, already some
information is revealed, but this is transparent to the stakeholders. Limitations of our
approach are that (1) the clients may not even be willing to reveal their p(xk), or (2) Xk

may not be predictable or the model may be wrong (although humans and organizations
usually do plan ahead).

It needs to be emphasized, that here we completely ignore strategic aspects, which can
lead to problems in our proposed approach. Such aspects could be analyzed, e.g., based
on game theory.

5.6. Experiments

5.6.1. Control and debugging problem on simple but real cloud
system

Here we test small parts of our approach in Section 5.4.2 on a very simple, but real
cloud system: a physical server running a specific application (a web server) together
with some concurrent workload (another web server). The system we consider has the
same causal DAG as two of the examples in Section 5.4.3. And while the scenarios are
generally similar, the system we consider here is simpler, for experimental purposes.
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Figure 5.7.: X-axis: Number of simultaneous requests S = s. Y-axis: 99th percentile of
prediction p̂(l|do s) (dashed blue) is close to 99th percentile (solid blue) of ground truth
test data from p(l|do s) (subsample in gray).

A source H keeps sending simultaneous request to application and concurrent workload
(drawn from a multivariate correlated Poisson distribution), of which R are received by
the application and S by the concurrent workload. Then, for each request, the latency
(performance) of the application is measured in nanoseconds by L.

We examine how well Step 1A works. First, we infer the causal diagram G1 depicted in
Figure 5.6, as well as an estimate of p(r, s, l) from observational samples of the system,
based on Step 1A, and together denote them by (incomplete) M1. Then, from M1, using
back-door adjustment Pearl [2000], we derive a prediction p̂(l|do s) for p(l|do s). Besides
Step 1A, this tests the applicability of Step 1C, when thinking of a simple controller
that outputs a constant for S (e.g. by putting the application on another machine
with such a concurrent workload), as well as Step 1D which relies on post-interventional
distributions (of an updated model, though). The outcome is depicted in Figure 5.7,
where we use the 99th percentile as statistic, which is common in cloud computing. It
shows that the prediction is close to the ground truth test data, both in magnitude and
in trend.

5.6.2. Example of a more realistic cloud system

The experiments in the previous Section 5.6.1 were performed on an overly simplistic
system. Here we want to give an example of a preliminary, partial causal model (causal
DAG plus some knowledge on the mechanisms, e.g., additivity) of a more realistic system
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to which our approach in Section 5.4.2, in particular the performance debugging in Step
1D, is meant to be applied. Note that this is merely for illustration purposes, we do not
test any hypothesis here.8

We consider a cloud sever running serveral VMs. We focus on one specific VM, call it A
for the moment. Inside the VM A, a web sever B (more specifically: “lighttpd”) runs.
We consider the following observed and hidden variables, among others, measured inside
and outside A9:

• “req size”: size of the file requested by an internet user from the web server B;

• “local load”: resource-consuming activity of other applications in A, besides B;

• “concurrent vm count”: number of VMs running concurrently with A on the phys-
ical sever (outside A);

• “srv lat”: latency of the web server B, which can be seen as part of the objective
which needs to be minimized.

We depict the partial causal model in Figure 5.8. It is taken from Carata [2016], who also
gives descriptions for all other variables in the figure not discussed here. Note that this is
a model of an experimental system, while on a system in production, some variables, such
as “local load” and “concurrent vm count”, could be influences by a (hidden) common
cause, similar to H in the previous experiment in Section 5.6.1.

This model was inferred as described in Step 1A, in an iterative and sequential way,
based on non-causal associational knowledge about the program execution structure
(known from the program code) as well as the general system architecture, further
expert knowledge, and independence tests on sampled data. As can be seen, often the
integrated knowledge allows to draw conclusions on the additivity of mechanisms, which
can be based on the fact the runtime of one program essentially is the sum of the runtimes
of its subroutines.

8The inference of the causal model of – and the application of our approach to – such a complex system
turned out to be more difficult than expected. Therefore, no evaluation of our approach applied to
this system can be reported at this stage.

9In cloud computing, it is important to distinguish between inside and outside of A, since, for privacy
reasons, often only things inside A can be known to the client that A belongs to.
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Figure 5.8.: Example of a preliminary causal DAG of a cloud system. Variables on the
left side are measured within the VM A, that runs together with other VMs on the cloud
server. The right side contains measurements outside the VM (the “hypervisor” is the
program that is responsible for allocating the cloud server’s resources among the VMs).
The objective is to minimize the latency of some web server B running in A, denoted by
“srv lat”, while keeping utilization by other VMs, denoted by “concurrent vm count”,
as high as possible. Possible manipulations include reducing the workload within the
VM A, denoted by “local load”, versus changing the number of concurrent VMs. If
the causal model is good, it can help to pick the optimal manipulations. The figure is
taken from [Carata, 2016] which also gives descriptions of the remaining variables not
described here.
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Such a model could help for decision making in various ways, for instance for the per-
formance debugging problem mentioned in Sections 5.4.1 and 5.4.3: A cloud client, the
owner of A, may observe a high latency (“srv lat”) of his web server B, together with
some other variables. He wonders if, in this situation, the high latency is caused by
other programs within his VM A (“local load”), by other, concurrent VMs (“concur-
rent vm count”) running on the same physical cloud sever, or simply by large requests
(“req size”) coming in at that moment. Based on this, he could conclude whether he
should intervene on “local load”, which may be the simplest, or rather intervene on
“concurrent vm count” say by changing to another cloud product, such as a dedicated
server, which may be more expensive.

5.6.3. Predictability-privacy problem on simulated data

For our approach in Section 5.5.2 to work, p̄(z) has to approximate p(z) reasonably
well. Here we examine to what extent this is the case in a simulated version of the toy
example in Section 5.5.3, additionally testing how tight the bound in Proposition 5.2
is. Compared to the toy example, we restrict ourselves to spot resources, i.e., {0, 1} for
Yk, and assume the following specific mechanisms: The policy πk is for both to simply
purchase their demand (Yk := Xk), Clark’s pricing is “cheap” (Z = 0) versus “very
expensive for one of them since both want large” (Z = 1), in particular Z := Y1 AND Y2.
Furthermore,

Xk := C XOR D XOR NXk
,

where D is some confounder which Alice and Bob do not want to reveal.

Now for “each” 0 ≤ r ≤ 0.5, we draw 1000 samples of C ∼ Bernoulli(0.5 − r), D ∼
Bernoulli(r) to find out how wrong p̄(z) gets when increasing the confounder D that is
not revealed or adjusted for, and NXk

∼ Bernoulli(0.2 − 0.2r) (to also examine a little
variation in the noise strength). The outcome is depicted in Figure 5.9. It shows that
p̄(z) is a good estimate in this simple setting (which is also due to the fact that already
p(x1), p(x2) alone reveal something about p(x1, x2)). It also shows that (in this setting),
the bound from Proposition 5.2 may be improvable, as the dashed red line is far away
from the solid red line.
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Figure 5.9.: X-axis: Parameter r (the higher, the more influence from D). Y-axis: p̄(z)
(dashed blue) is close to p(z) (solid blue) even when D gets strong and C weakens;
1
4D(p(Z)‖p̄(Z)) (solid red), 1

4
∑
k H(Xx|C) (dashed red).

5.7. Related work

Regarding Section 5.3, approximations to non-identifiable quantities in causal models
were examined by Balke and Pearl [1994]. While their technique does not seem directly
applicable to the setup of Proposition 5.1, it may allow to derive stronger statements,
i.e., further narrowing down the set of possible p(z), than Proposition 5.2, which could
be examined in future work. We discussed some related work for Section 5.4, i.e., the
control and debugging problem, in Section 5.4.3. Additionally, maybe the work closest
to our investigation in that section is [Lemeire et al., 2007], which suggests to use causal
models for performance modeling of programs, but does not consider counterfactuals,
or more complex computing systems. Generally, the utilization of modularity based on
PCMs in that section is strongly inspired by the theory of “transportability” of causal
relations developed by Pearl and Bareinboim [2011b], however, that theory has not
been applied to (cloud) computing problems so far. The relation between causality and
control is also considered in [Bottou et al., 2013]. Regarding Section 5.5, [Angel et al.,
2014] can be seen as related in that they allow the provider to hide their exact costs
while still making some information of the costs available to others. The work [McSherry
and Talwar, 2007] investigates privacy-preserving mechanisms, but does not consider the
integration of the revealed information to an (estimate) of a causal model.
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5.8. Conclusions of this chapter

This chapter assayed how causal inference – in principle – can help with technological
and economical problems in cloud computing. Guided by these problems, we presented
two theoretical results for approximate causal inference, and reported initial experimen-
tal results. The application of causal inference in this domain is, to the best of our
knowledge, the first of its kind. We believe the potential in this area is very significant,
both for applications and for methodological work. Problems in computing systems
rarely fit the classical settings that machine learning excels at.

In particular, for issues such as integration of sandbox experiments, (formally) reasoning
about concepts such as causation, causal sufficiency or randomization seems crucial, and
methodology which neglects this, such as classical machine learning, may be prone to
errors. Another concept which plays an important role in causal modeling (but, of
course, also in some other areas) is that of identifiability, which helps to “critically”
reason about what can and what cannot be inferred based on the given. We used it for
the control problem for cases that only some “modules” of the system vary.

A causal perspective with its focus on predicting the effect of interventions may be a
crucial component in future developments, ideally combined with aspects of game theory
and mechanism design, to extend our approach for the predictability-privacy trade-off.
Next steps would involve extending the experimtens on real cloud systems, such as the
system for which a preliminary model was derived in Section 5.6.2, and based on this,
advancing the approach we sketched in Section 5.4.
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Conclusions

The goal of this investigation was to better understand causation; to develop methods for
inferring probabilistic causal models (PCMs) in realistic scenarios, integrating the vast
amounts of empirical data available today as well as high-order knowledge, accepting
approximations instead of unique identification; and to use PCMs for informed decision
making in technical, economical and natural systems. In this conclusion, we briefly want
to discuss some accomplishments and limitations, starting with this thesis in particular,
and ending with PCMs in general.

6.1. Conclusions on individual chapters

We began our main investigation in Chapter 3 with a systematic analysis of the problem
of hidden confounding in time series, in terms of theory and practical methods, assuming
the model of a vector autoregressive (VAR) processes. We showed how, under rather
weak additional assumptions, the true causal structure is uniquely or approximately
identifiable despite hidden confounding, owing to the integration of the temporal struc-
ture. In spite of VAR processes being used so frequently as a model, a clear limitation
of our investigation is the assumption of linearity. But our results may also serve as a
basis when relaxing this assumption.

In Chapter 4, we tried to formalize the intuition that there are structures and prior
knowledge beyond perfect experiments (and purely observational studies) that can be
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integrated for causal inference and subsequent decision making. Roughly speaking, we
translated settings into a degree of “deviation from a perfect experiment” (i.e., strength
of hidden confounding), and showed how this degree of deviation can mathematically
imply approximations to the true causal effect (the less deviation, the better the con-
straints on the true causal effect). A drawback of this contribution is that there may
be more principled approaches to the problem. Furthermore, we did not evaluate our
approach on real data.

Chapter 5 was driven by decision making problems in cloud computing. We performed
a first investigation of how causal models can help to address key challenges in this field.
We established two theoretical results about approximative causal reasoning, with one
of them trying to make counterfactual reasoning based on PCMs more accessible for
debugging of cloud computing systems and real world scenarios in general. A limitation
of our investigation was that realistic systems are much more involved compared to the
toy settings we analyzed, and so we were only able to report initial results of a small part
of our method on a simple real systems. In particular, a more thorough investigation
of the practicability of counterfactual reasoning for decision making (possibly based
on assuming a smooth state process) as well as of approximate integration of causal
knowledge remains to be performed.

6.2. A broader view on this thesis

Let us make some more general remarks about this thesis. Owing to the involvedness
of the concept of causation, we tried to cover many aspects, from inference on a rather
abstract level to more specific applications. (And in the background chapter we also dis-
cussed the meaning of causation, quoting several definitions, commenting on difficulties,
and putting the concept of causation into context – instead of just sticking to a standard
treatment based on say PCMs and interventions which may swipe conceptual difficulties
under the rug.) A disadvantage of this rather broad coverage, based on the fact that any
investigation is selective, is that some topics were only touched superficially, i.e, some
parts of this thesis contain initial ideas rather than completed contributions.

Also from the perspective of general research practice this thesis covered a rather broad
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range, form parts that are more based on “exploiting” beaten tracks but may be lacking
the connection to a specific real world problem, to parts that try to “explore” and
push the boundaries of established frameworks towards relevant directions. Chapter 3,
with its concrete mathematical contributions within the frameworks of VAR processes,
Granger causality and PCMs can be seen as en example of “exploitation” – although it
needs to be emphasized that in spite of the practical relevance of hidden confounding in
time series, it is surprising how little this issue has been theoretically analyzed so far.
An example of “exploration” can be seen in Chapter 5, where we tried to establish a
rather new application field for causal modeling, based on formalizing relevant questions
in terms of causal modeling language, establishing initial mathematical results to answer
them approximately, seeking to overcome limitations of previous approaches which are
based on modeling correlation rather than causation.

6.3. Causal models in this thesis and beyond

We also want to make some broader comments on accomplishments and limitations of
PCMs, while still keeping in mind their role in this thesis.

The language of PCMs constitutes a powerful tool for studying causal inference with
mathematical rigor. For instance, it helps to precisely phrase the problem of hidden
confounding in times series, which formed the starting point for Chapter 3. Generally,
a great advantage of PCMs are their ability to formally reconcile observational and
experimental settings. A downside of the formal rigor, as with any formal language and
axiomatic approach, is that it can delude into studying models, which are sometimes
arbitrary and meaningless, instead of studying reality itself. It is also not clear, to
what extent formal methods can lead towards a genuinely deeper causal understanding
of the world, it seems that it always depends on how well an informal thought can be
translated into a formal model. Additionally, it is worth mentioning that PCMs focus
on the “influence” aspect of causation, and neglect – to some extent – other ways in
which the concept of causation is applied. In this sense, it may be said that PCMs help
for reasoning about causation on the level of correlations and interventions, while they
are of limited help on other levels.

137



Chapter 6. Conclusions

The rigor of PCMs also reveals how strong assumptions and “inputs” are necessary for
causal inference to lead to meaningful “outputs”. For instance, the back-door criterion
by Pearl [2000] may work without any underlying assumptions, but it requires to know
most of the underlying causal DAG. To know the causal DAG though, one may have
to perform randomized experiments first, which in turn would render causal reasoning
pointless. In this thesis, building on previous work in this direction, we tried to overcome
this problem by integrating the rich conceptual context in which causation is embedded
in our world – a priori and a posteriori – to come up with “inputs” to causal inference
that are easier to obtain but still relevant. Examples include temporal knowledge in
Chapter 3, kowledge about partial compliance in Chapter 4 and, to a limited extent,
specifications of engineered systems in Chapter 5. PCMs proved a powerful language
to express and reason about such “alternative inputs” and allowed us to in fact estab-
lish several theoretical results in this direction, which we complemented with practical
methods to some extent. But clearly, the results are just small steps.

Regarding decision making based on PCMs the following can be said: Within the infer-
ence process that leads to a hypothesis class or Bayesian prior that relates past obser-
vations with outcomes of future actions, the language of PCMs seems to help to make
steps more explicit and give them a semantic. For instance, causal reasoning helped to
integrate sandbox experiments in Sections 5.4.2 and 5.4.3. However, in concrete cases,
often the difficulty of say coming up with a causal DAG – in particular the conditional
independences it entails – remains.

There are other limitations of approaches based on PCMs, including this thesis. For
instance, often one wants to find the factors that cause say an undesired situation which
one want to change, such as low performance of computer systems. But it is only after
a candidate factor was found and measured, that one can use PCMs to first verify or
falsify the candidate factor, and then inform decision making. Related to this is the
problem of defining meaningful variables, which is completely external to PCMs.

All in all it can be said that causal inference is a difficult topic – which is worth studying
though, in light of the importance of understanding causes and predicting effects in this
world.
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Proofs and detailed algorithm for
Chapter 3

Here we present proofs for Chapter 3, as well as an elaboration of Algorithm 1 in that
chapter.

Parts of this chapter are based on the appendix of [Geiger et al., 2015a].

A.1. Proofs for Section 3.5

For this section keep in mind the definitions of W,X,Z,N,NX , NZ and A,B,C,D,E

from Section 3.4.1 as well as M1 from Section 3.5.

Proof of Lemma 3.1. The case K = KX is obvious, so we only prove the case K > KX .

In particular, keep in mind that Xt

Zt

 = A

 Xt−1

Zt−1

+Nt,

and

A =
 B C

D E

 . (A.1)
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Hence based on  Xt

Zt

 = A2

 Xt−2

Zt−2

+ ANt−1 +Nt,

and

A2 =
 B2 + CD BC + CE

DB + ED DC + E2

 .
we get

Xt = (B2 + CD)Xt−2 + (BC + CE)Zt−2 +BNX
t−1 + CNZ

t−1 +NX
t , (A.2)

Xt−1 = BXt−2 + CZt−2 +NX
t−1. (A.3)

Based on the definition of the generalized residual Rt(U1, U2) in Section 3.5 and equations
(A.2) and (A.3), we have

Rt(U1, U2)

= Xt − U1Xt−1 − U2Xt−2

= (B2 + CD)Xt−2 + (BC + CE)Zt−2 +BNX
t−1 + CNZ

t−1 +NX
t

− U1(BXt−2 + CZt−2 +NX
t−1)− U2Xt−2

= (B2 + CD − U1B − U2)Xt−2 + (BC + CE − U1C)Zt−2

+ (B − U1)NX
t−1 + CNZ

t−1 +NX
t .

Proof of Lemma 3.2. Equation (3.5) together with Equation (3.4) implies

Rt(U1, U2) = (B − U1)NX
t−1 + CNZ

t−1 +NX
t .
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Based on ‖A‖ < 1, we have [Lütkepohl, 2006]
 Xt

Zt

 = Wt =
∞∑
i=0

AiNt−i =
∞∑
i=0

Ai

 NX
t−i

NZ
t−i

 .

This implies that
(Xt−2−j)∞j=0 ⊥⊥ NX

t−1, N
Z
t−1, N

X
t .

Proof of Lemma 3.3. Keep in mind that

M1 = E

 Xt

Zt

 (XT
t , X

T
t−1)


=
 E[XtX

T
t ] E[XtX

T
t−1]

E[ZtXT
t ] E[ZtXT

t−1]

 .

Based on Equation (3.4), we have for j = 0, 1

0 = cov(Rt(U1, U2), Xt−2−j)

= (B2 + CD − U1B − U2)cov(Xt−2, Xt−2−j) (A.4)

+ (BC + CE − U1C)cov(Zt−2, Xt−2−j)

= (B2 + CD − U1B − U2)E[XtX
T
t−j] + (BC + CE − U1C)E[ZtXT

t−j]. (A.5)

We can write Equation (A.5) as the following system of linear equations

(
B2 + CD − U1B − U2, BC + CE − U1C

) E[XtX
T
t ] E[XtX

T
t−1]

E[ZtXT
t ] E[ZtXT

t−1]

 = 0,

that is

(
B2 + CD − U1B − U2, BC + CE − U1C

)
M1 = 0.
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Since we assumed that M1 has full rank, we can conclude

B2 + CD − U1B − U2 = 0 ∧ BC + CE − U1C = 0.

Proof of Lemma 3.4. C is a KX ×KZ matrix of full rank, with KZ ≤ KX , hence C has

full row rank. Hence
 B C

I 0

 has full row rank. Thus, there is a (U1, U2) which solves

Equation (3.5).

A.2. Proofs for Sections 3.6.1 and 3.6.2

Recall assumptions A1, A2, A3, G1, G2 and the definition of F1, F2 in Sections 3.6.1
and 3.6.2 and the definition of W,X,Z and A,B,C,D,E from Section 3.4.1.

A.2.1. Proof of Theorem 3.1

Keep in mind that by a representation of a random vector Y we mean a matrix Q

together with a random vector F = (f1, . . . , fr) with independent components, such
that Y = QF .

To prove Theorem 3.1 we need the following seminal result which is contained in [Kagan
et al., 1973, Theorem 10.3.1]. It allows to exploit non-Gaussianity of noise terms to
achieve a certain kind of identifiability. The theorem will be at the core of the proof of
Theorem 3.1.

Theorem A.1. Let Y = QF and Y = RG be two representations of a p-dimensional
random vector, where Q and R are constant matrices of order p×r and p×s respectively,
and F = (f1, . . . , fr) and G = (g1, . . . , gs) are random vectors with independent compo-
nents. Then the following assertion holds. If the i-th column of Q is not proportional to
any column of R, then Fi is normal.
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We proceed with the proof of Theorem 3.1.

Proof of Theorem 3.1. Ansatz:

We prove that given PX , the structural matrix B underlying X is determined uniquely.

Choosing (U1, U2):

Based on assumption G1 and Lemmas 3.4 and 3.2, there always exists (U1, U2) such that

cov(Rt(U1, U2), Xt−2−j) = 0. (A.6)

Pick one such (U1, U2).

Deriving a representation for

 Rt(U1, U2)
Rt−1(U1, U2)

:

Based on Lemma 3.3, we know that

B2 + CD − U1B − U2 = 0 ∧ BC + CE − U1C = 0,

and thus, based on Equation (3.4),

Rt(U1, U2) = NX
t + CNZ

t−1 + (B − U1)NX
t−1.

Observe that
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 Rt(U1, U2)
Rt−1(U1, U2)


=
 NX

t + CNZ
t−1+ (B − U1)NX

t−1

NX
t−1 +CNZ

t−2 + (B − U1)NX
t−2



=
 I C (B − U1) 0 0

0 0 I C (B − U1)




NX
t

NZ
t−1

NX
t−1

NX
t−2

NZ
t−2


=: QÑt.

This is one representation of
 Rt(U1, U2)
Rt−1(U1, U2)

.

Based on Theorem A.1 and the structure ofQ, B−U1 is identifiable from
 Rt(U1, U2)
Rt−1(U1, U2)

.

This can be seen as follows.

Identifying B − U1 from

 Rt(U1, U2)
Rt−1(U1, U2)

:

Knowing PX , we also know P(Rt(U1,U2),Rt−1(U1,U2)) which in particular determines the class

of all possible representations of
 Rt(U1, U2)
Rt−1(U1, U2)

. Pick one representation

 Rt(U1, U2)
Rt−1(U1, U2)

 = Q′Ñ ′t

out of this class. W.l.o.g. let Q′ be such that all its columns are pairwise linearly
independent.

Theorem A.1 implies that each column of Q′ is a scaled version of some column of Q
and vice versa.

144



Appendix A. Proofs and detailed algorithm for Chapter 3

Now define the KX ×KX matrix V := (v1, . . . , vKX
) as follows.

For each j = 1, . . . , KX :

If Q′ has a column with a non-zero entry at position KX + j and a non-zero entry in the
upper half, let this column be denoted by qj and define

vj :=
[

1
[qj]KX+j

qj

]
1:KX

,

where [q]k1,...,kl
denotes the l-dimensional vector consisting of k1st to klth entry of a

vector q, and k : l is shorthand for k, k + 1, . . . , l. Otherwise, if Q has no such column,
then set

vj := 0.

We have V = B − U1. This can be seen as follows:

Let wj denote the jth column of B − U1.

For each j = 1, . . . , KX :

Either we have wj 6= 0. Then the corresponding column in Q, i.e.
 wj

ej

, where ej

denotes the jth unit vector, is the only column with a non-zero entry at position KX + j

and a non-zero entry in the upper half. Thus Q′ contains a scaled version of
 wj

ej


and no other column with a non-zero entry at position KX + j and a non-zero entry in
the upper half. We denoted this column by qj and defined vj =

[
1

[qj ]KX +j
qj

]
1:KX

. Since[
1

[qj ]KX +j
qj

]
KX+j

= 1 =
 wj

ej


KX+j

, we know that 1
[qj ]KX +j

qj =
 wj

ej

 and hence

vj = wj.

Or we have wj = 0. Then Q and hence also Q′ contains no column with a non-zero
entry at position KX + j and a non-zero entry in the upper half. Then by definition we
have vj = 0 and thus again vj = wj.

Hence V = B − U1.

Putting all together:
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We defined U1 solely based on PX and an arbitrary choice and then, for the fixed U1,
uniquely determined B − U1, again only based on PX . Hence B = U1 + (B − U1) is
uniquely determined by PX .

A.2.2. Proof of Theorem 3.2

Here we prove Theorem 3.2.

Proof of Theorem 3.2. Keep in mind the proof of Theorem 3.1. There we showed that
the matrix

Q =
 I C (B − U1) 0 0

0 0 I C (B − U1)


is identifiable from PX up to scaling and permutation of its columns, for some U1. This
implies that we can identify the matrix

Q1 =
(

I C
)

up to scaling and permutation of its columns, simply by picking those columns of any
scaled and permuted version of Q1, that only have non-zero entries in the upper half.

But this in turn implies that we can identify the set of columns of C with at least two
non-zero entries up to scaling of those columns. Just pick from any scaled and permuted
version of Q1 those columns with at least two non-zero entries.
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A.2.3. Proof of Theorem 3.3

Following standard terminology [J. E. Dennis et al., 1976], for any n × n-matrices
F1, . . . , Fm and Y we call

M(Y ) := F0Y
m + F1Y

m−1 + . . .+ Fm

a matrix polynomial of degree m. We say a matrix Y0 is a right solvent or simply solvent
of M(Y ), if M(Y0) = 0. We say λ ∈ C is a latent root of M(Y ), if, slightly overloading
notation, M(λ) := M(λ I) is not invertible.

To prove Theorem 3.3 we need the following result which is a version of [J. E. Dennis
et al., 1976, Corollary 4.1].

Theorem A.2. Let M(Y ) := F0Y
m + F1Y

m−1 + . . . + Fm be any matrix polynomial,
where F1, . . . , Fm are n× n square matrices. If M(λ) has mn distinct latent roots, then
it has at most

(
mn
n

)
different right solvents.

(Note that this assertion is also stated in the conclusion section of [Pereira, 2003] but
without proof it seems.)

Proof. In this proof we assume the paper [J. E. Dennis et al., 1976] as context. That is,
all definitions and equations we refer to in this proof are meant w.r.t. that paper.

Let S be a solvent of M(Y ). By the corollary containing Equation (1.4), we have
M(λ) = Q(λ)(Iλ−S), with Q(λ) a matrix polynomial of degree m−1. By assumption,
we know that det(M(λ)) = det(Q(λ)) det(Iλ−S) has mn distinct roots. Since det(Q(λ))
has at most (m− 1)n different roots, we know that det(Iλ− S) has to have n different
roots. Hence S has n distinct eigenvalues and is uniquely determined by its n eigenpairs,
i.e. pairs (a,C v) such that Sv = av.

Keep in mind that a latent pair of M(λ) is a scalar a together with a ray C v for some
vector v 6= 0 such that M(a)v = 0. Let L denote the set of latent pairs of M(λ). Based
on Equation (1.4), each eigenpair of a solvent S is a latent pair of M(λ). Hence for each
solvent S, the tuple of n eigenpairs that uniquely determines this solvent has to be a
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subset of size n of L. Therefore, the number of solvents is less or equal than
(
|L|
n

)
, in

case L is finite.

Consider the mn ×mn matrix CB defined by Equation (3.2). Theorem 3.1, applied to
CB (see remark above Equation (3.2)), states that

det(CB − λI) = (−1)mn det(M(λ)).

Hence det(CB − λI) has exactly mn distinct roots.

Now assume that |L| > mn, i.e., M(λ) has more than mn latent pairs. Then there
have to be two latent pairs (a,C v) and (a,C v′) with C v 6= C v′. Based on Theorem 3.2,
part (i), this implies that CB, as defined by Equation (3.2), has two linearly independent
vectors as eigenvectors to the same eigenvalue a. Thus the eigenvalue a has geometric and
hence also algebraic multiplicity at least 2. This implies that det(CB − λI) has exactly
mn distinct roots and at least one of the roots, namely a, has algebraic multiplicity at
least 2. This is a contradiction to the fact that det(CB − λI) has degree mn.

Proof of Theorem 3.3. Keep in mind that assumption A3 reads D = 0.

Let S1 denote the set of U = (U1, U2) such that

cov(Rt(U1, U2), Xt−2−j) = 0. (A.7)

Let S2 denote the set of U = (U1, U2) such that det(TU(α)) has 2KX distinct roots.

Based on the assumption G2, there exists U = (U1, U2) such that the equation

(U1, U2)
 B C

I 0

 =
(
B2, BC + CE

)
(A.8)

is satisfied and det(TU(α)) has 2KX distinct roots. This U is in S2 and based on Lemma
3.2 it is also in S1. Hence S := S1 ∩ S2 is non-empty.

Note that S is defined only based on PX .
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Pick one U = (U1, U2) out of S.

Let

L := {B̃ : TU(B̃) = 0}.

Based on Theorem A.2, L has at most
(

2KX

KX

)
elements. And since U ∈ S1, assumption

G1 together with Lemma 3.3 implies that B ∈ L, for the true B.

Hence B is determined by PX up to
(

2KX

KX

)
possibilities.

A.3. Discussion of the genericity assumptions: an
elaboration of Section 3.6.3

This section is an elaborated version, including proofs, of Section 3.6.3.

We want to argue why the assumptions G1 and G2 stated in Sections 3.6.1 and 3.6.2
are generic. Keep in mind the definitions of W,X,Z,N,NX , NZ and A,B,C,D,E,Σ
from Section 3.4.1 as well as M1 from Section 3.5. The idea is to define a natural
parametrization of (A,Σ) and to show that the restrictions that assumptions G1 and G2,
respectively, impose on (A,Σ) just exclude a Lebesgue null set in the natural parameter
space.

Have in mind that Theorems 3.1 and 3.3 state (almost) identifiability of B from PX

induced by any W in F1 and F2, respectively. In particular, such W can have arbitrary
numbers of components K, as long as KX ≤ K ≤ 2KX . However, for the sake of
simplicity, we show the genericity of assumptions G1 and G2 only under the assumption
of an arbitrary but fixed K. Therefore, in this section, let K such that KX ≤ K ≤ 2KX

be arbitrary but fixed. As usual, let KZ = K −KX .

Let λk denote the k-dimensional Lebesgue measure on Rk. Let vec denote the column
stacking operator and vec−1 its inverse. The dimension of the domain of vec can always
be understood from the context. For a vector q, let [q]k1,...,kl

denote the l-dimensional
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vector consisting of k1st to klth entry of q. Moreover, let k : l be shorthand for k, k +
1, . . . , l.

A.3.1. Genericity assumption in Theorems 3.1 and 3.2

Let Θ1 denote the set of all possible parameters (A′,Σ′) for a K-variate VAR processes
W ′ that additionally satisfy assumption A2, i.e., correspond to structural W ′. Let S1

denote the subset of those (A′,Σ′) ∈ Θ1 for which also assumption G1 is satisfied.

(The relation between S1 as defined above and F1 as defined in Section 3.6.1 is the fol-
lowing: for any process W ′ with parameters (A′,Σ′), W ′ ∈ F1 iff W ′ satisfies assumption
A1 (i.e., its noise components are non-Gaussian) and additionally (A′,Σ′) ∈ S1.)

To parametrize Θ1 in a practical way, let g = (g1, g2) : RK2+K → RK2 ×RK2 be defined
by

g1(v) := vec−1([v]1:K2),

g2(v) := diag([v]K2+1:K2+K),

for all v ∈ RK2+K . Hence g1 is the natural parametrization of A and g2 for Σ.

We repeat the proposition already stated in Section 3.6.3:

Proposition 1. We have λK2+K (g−1(Θ1 \ S1)) = 0.

Let Φ1 := g−1(Θ1). Since g|Φ1 : Φ1 → Θ1 is a linear bijective function, the above
statement can be interpreted as Θ1\S1 being very small and thus G1 being a requirement
that is met in the generic case.

A.3.1.1. Proof of Proposition 3.1

The proof idea for Proposition 3.1 is that g−1(Θ1 \ S1) is essentially contained in the
union of the root sets of finitely many multivariate polynomials and hence is a Lebesgue
null set. Before we give a rigorous proof, we first need introduce some definitions and
establish two lemmas.
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Lemma A.1. For any n and any non-zero multivariate polynomial q(x1, . . . , xn), the
set

L := {(x1, . . . , xn) ∈
n

R : q(x1, . . . , xn) = 0}

is a null set w.r.t. the n-dimensional Lebesgue measure on Rn.

Proof. We prove the statement via induction over n.

Basis:

Let n = 1. Let q(x1) be any non-zero polynomial. By the fundamental theorem of
algebra it follows immediately that it has at most deg(q) real roots. Hence L is a
Lebesgue null set.

Inductive step:

Now assume the statement holds for all multivariate polynomials in less than n variables.
Let q(x1, . . . , xn) be any n-variate non-zero polynomial. We can consider q as a univariate
polynomial in x1, denoted by r(x1;x2:n), with coefficients ri(x2:n) that are multivariate
polynomials in x2:n, i.e.

q(x1, . . . , xn) = r(x1;x2:n) = r0(x2:n) + r1(x2:n)x1 + . . .+ rl(x2:n)xl1,

for some l.

There has to be some j such that rj(x2:n) is not the zero polynomial, since otherwise
q(x1, . . . , xn) would be the zero polynomial. Let

L′ := {(x2, . . . , xn) ∈
n−1
R : rj(x2, . . . , xn) = 0}.

By induction, we know that λn−1(L′) = 0. Hence r(x1;x2:n) is a non-zero polynomial
for all x2:n ∈ Rn−1 \L′. In particular, due to the fundamental theorem of algebra, for all
x2:n ∈ Rn−1 \L′, the set Lx2:n := {x1 ∈ R : r(x1;x2:n) = 0} is finite (has at most n − 1
elements).

Note that, since q is continuous, L = q−1({0}) is closed and thus measurable. Let 1
denote the indicator function. In particular, 1L is measurable. Furthermore, note that
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1L(x1:n) = 1Lx2:n
(x1) for all x1:n. Therefore and due to Fubini’s theorem (for completed

product spaces) we have

λn(L) =
∫
Rn

1L(x1, . . . , xn) dx1:n

=
∫
Rn−1

∫
R

1Lx2:n
(x1) dx1 dx2:n

=
∫
Rn−1 \L′

∫
R

1Lx2:n
(x1) dx1 dx2:n

=
∫
Rn−1 \L′

λ1(Lx2:n) dx2:n

=
∫
Rn−1 \L′

0 dx2:n

= 0.

Let Ψ1 := g−1(S1).

For a I × J matrix

M =


m11 . . . m1J

...
mI1 . . . mIJ

 ,
let [M ]ij := mij and [M ]i1:i2,j1:j2 := (mij)i1≤i≤i2,j1≤j≤j2 .

Keep in mind the following equations for the autocovariance matrices Γi := E[W̃tW̃
>
t−i]

of any VAR process W̃ with parameters (Ã, Σ̃) [Lütkepohl, 2006]:

vec(Γ0) = (I−Ã⊗ Ã)−1vec(Σ̃), (A.9)

Γi = ÃiΓi−1. (A.10)

In this subsection, given any φ ∈ Φ1, let W φ be some K-variate VAR process with
parameters g(φ), and let Xφ denote the first KX and Zφ denote the remaining K −KX

components of W φ.

And also for this subsection, for any φ ∈ Φ1 and i ≥ 0, let Γi(φ) := E[W φ
t (W φ)>t−i].
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Recall the definition of M1 from Section 3.5. Here we explicitly consider M1 as a function
on Φ1. That is, for any φ ∈ Φ1 let

M1(φ) := E
[
W φ
t ((Xφ

t )>, (Xφ
t−1)>)

]
.

Later we want to shot that the set of φ ∈ Φ1 for which M1(φ) does not have full rank is
a Lebesgue null set. It suffices to show that M1(φ) has a fixed square submatrix M2(φ)
such that the set of φ ∈ Φ1 for which M2(φ) is not invertible is a Lebesgue null set, since
the former set is contained in the latter. For this purpose let us define

M2(φ) :=

 E
[
W φ
t

(
(Xφ

t )>, [Xφ
t−1]KX−KZ :KX

)]
, if K > KX

E
[
W φ
t (W φ

t )>
]

(= Γ0(φ)), if K = KX

.

That is, M2 is a K ×K square matrix with a subset of the columns of M1 as columns
(keep in mind that [Xφ

t−1]KX−KZ :KX
are the (KX − KZ)-th to KX-th components of

Xφ
t−1).

Let

f(φ) := det(M2(φ)). (A.11)

Lemma A.2. There is some φ ∈ Φ1 such that f(φ) 6= 0.

Proof. We only treat the cases K = KX and K = KX+1. The cases KX+1 < K ≤ 2KX

can be treated similarly.

The case K = KX:

Let Ã := 1
2 I and Σ̃ := I and let φ := g−1(Ã, Σ̃). Based on Equation (A.9) this immedi-

ately implies

M2(φ) = Γ0(φ) = 4
3 I, (A.12)

and hence f(φ) = det(M2(φ)) 6= 0.

The case K = KX + 1:
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Let Σ̃ := I and

Ã :=



1
2

. . .
1
2

1
2

1
2
1
2


=:
 Ã1 0

0 Ã2

 ,

and let φ := g−1(Ã, Σ̃) denote the corresponding parameter vector. Now we want to
calculate Γ0(φ),Γ1(φ). For this purpose, observe that we can split W φ into the two
independent VAR processes

Y 1 := ([Xφ]1, . . . , [Xφ]KX−1)>,

Y 2 := ([Xφ]KX
, Z)>.

Equation (A.9) applied to Y 1 implies

vec(E[Y 1
t (Y 1

t )>]) = (I−Ã1 ⊗ Ã1)−1vec(I) = 4
3vec(I),

that is
E[Y 1

t (Y 1
t )>] = 4

3 I .

On the other hand, Equation (A.9) applied to Y 2 yields

vec(E[Y 2
t (Y 2

t )>]) = (I−Ã2 ⊗ Ã2)−1vec(I) = 4
27


9 3 3 5

9 3
9 3

9

 vec(I),

that is

E[Y 2
t (Y 2

t )>] = 4
27

 14 3
3 9

 .
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Thus

Γ0(φ) = E[W φ
t (W φ)>t ] =

 E[Y 1
t (Y 1

t )>] 0
0 E[Y 2

t (Y 2
t )>]



=



4
3

. . .
4
3

56
27

4
9

4
9

4
3


,

and

Γ1(φ) = ÃΓ0(φ) =



2
3

. . .
2
3

34
27

8
9

2
9

2
3


.

Hence

M2(φ) =



4
3

. . .
4
3

56
27

34
27

4
9

2
9


.

Hence φ is such that f(φ) = det(M2(φ)) 6= 0.

Proof of Proposition 3.1. Recall that Φ1 = g−1(Θ1), Ψ1 = g−1(S1), f(φ) = det(M2(φ)),
and how S1 is related to f .

First, show that f is a rational function:

Keep in mind that each entry of g1(φ) is a linear function in φ.
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For any φ ∈ Φ1, let G(φ) := I−g1(φ) ⊗ g1(φ). Note that each entry of G(φ) is a
multivariate polynomial in φ. We have for i = 0, 1, and for all φ ∈ Φ1, using Equation
(A.9) and Cramer’s rule,

Γi(φ) = g1(φ)ivec−1(G(φ)−1vec(g2(φ)))

= g1(φ)ivec−1(det(G(φ))−1adj(G(φ))vec(g2(φ)))

= det(G(φ))−1g1(φ)ivec−1(adj(G(φ))vec(g2(φ))).

(Note that the definition of Φ1 implies that ‖g1‖ < 0 and thus det(G) 6= 0 on Φ1.)

Keep in mind that for any matrix Q, the determinant det(Q) as well as all entries of
the adjugate adj(Q), are multivariate polynomials in the entries of Q. In particular each
entry of g1(φ)ivec−1(adj(G(φ))vec(g2(φ))) is a multivariate polynomial in φ.

Now observe that on Φ1 we have

f = det(M2)

= det
((

[Γ0]1:K,1:KX
, [Γ1]1:K,KX−KZ :KX

))
= det

(([
det(G)−1vec−1(adj(G)vec(g2))

]
1:K,1:KX

,[
det(G)−1g1vec−1(adj(G)vec(g2))

]
1:K,KX−KZ :KX

))
= det(G)−K det

(([
vec−1(adj(G)vec(g2))

]
1:K,1:KX

,[
g1vec−1(adj(G)vec(g2))

]
1:K,KX−KZ :KX

))

For all φ ∈ RK2+K , let

r(φ) := det(G(φ))K ,

q(φ) := det
(([

vec−1(adj(G)vec(g2))
]

1:K,1:KX

,
[
g1vec−1(adj(G)vec(g2))

]
1:K,KX−KZ :KX

))
.

Based on the above argument, q(φ), r(φ) are multivariate polynomials (mappings from
RK2+K to R). Hence in particular, f = q

r
is a rational function on Φ1.

Second, show that λK2+K ◦ g−1(Θ1 \ S1) = 0:
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In what follows, we only discuss the case K > KX . The case K = KX works similarly
and is even simpler.

Let C̃(φ) denote the upper right submatrix of g1(φ) of dimension KX × KZ . Keep in
mind that Ψ1 = g−1(S1) is the set of those φ ∈ Φ1 = g−1(Θ1), for which C̃(φ) and M1(φ)
have full rank.

Let H denote the set of those φ ∈ Φ1, for which det
([
C̃(φ)

]
1:KZ ,1:KZ

)
= 0. Since

det
([
C̃(φ)

]
1:KZ ,1:KZ

)
is a non-zero multivariate polynomial in φ, based on Lemma A.1

we have λK2+K(H) = 0.

Let H ′ denote the set of those φ ∈ Φ1, for which q(φ) = 0. Based on Lemma A.2 we
know that there is some φ such that q(φ) 6= 0. Hence based on Lemma A.1 we have
λK2+K(H ′) = 0.

If any φ is in Φ1 but neither in H nor in H ′, then det
([
C̃(φ)

]
1:KZ ,1:KZ

)
6= 0 and q(φ) 6= 0,

and thus C̃(φ) and M1(φ) have full rank. That is, HC ∩ (H ′)C ∩ Φ1 ⊂ Ψ1. Therefore

λK2+K
(
g−1(Θ1 \ S1)

)
= λK2+K

(
g−1(Θ1) \ g−1(S1)

)
= λK2+K (Φ1 \Ψ1)

≤ λK2+K
(
Φ1 \ (HC ∩ (H ′)C ∩ Φ1)

)
≤ λK2+K

(
Φ1 \ (HC ∩ (H ′)C)

)
= λK2+K

(
Φ1 \ (H ∪H ′)C

)
= λK2+K (Φ1 ∩ (H ∪H ′)) = 0.

A.3.2. Genericity assumptions in Theorem 3.3

Let Θ2 denote the set of all possible parameters (A′,Σ′) for the K-variate VAR processes
W that additionally satisfy assumption A3, i.e., are such that the submatrix D of A is
zero. Let S2 denote the subset of those (A′,Σ′) ∈ Θ2 for which also assumption G1 and
G2 is satisfied.
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To parametrize Θ2 in a practical way, let h = (h1, h2) : R2K2−KXKZ → RK2 ×RK2 be
defined by

h1(v) :=
 vec−1([v]1:K2

X
) vec−1([v]α)

0 vec−1([v]β)

 ,
h2(v) := vec−1([v]K2−KXKZ+1:2K2−KXKZ

),

for all v ∈ RK2+K , where

α := K2
X + 1 : K2

X +KXKZ ,

β := K2
X +KXKZ + 1 : K2 −KXKZ .

Hence h1 is the natural parametrization of A and h2 for Σ.

We repeat the proposition already stated in Section 3.6.3:

Proposition 2. We have λ2K2−KXKZ
(h−1(Θ2 \ S2)) = 0.

Let Φ2 := h−1(Θ2). Since h|Φ2 : Φ2 → Θ2 is a linear bijective function, the above
statement can be interpreted as Θ2 \ S2 being very small and thus the combination of
G1 and G2 being a requirement that is met in the generic case.

A.3.2.1. Proof of Proposition 3.2

The proof idea for Proposition 3.2 - similar as for Proposition 3.1 - is that h−1(Θ2 \
S2) is essentially contained in the union of the root sets of finitely many multivariate
polynomials and hence is a Lebesgue null set. To give a rigorous proof of Proposition
3.2, we first need to introduce some definitions which are very similar to those in Section
A.3.1, and establish a lemma.

Recall that T(U1,U2)(Q) = Q2 − U1Q− U2 (see Section 3.6.2).

Within this section, given any φ ∈ Φ2, let W φ be some K-variate VAR process with
parameters h(φ), and let Xφ denote the first KX and Zφ denote the remaining K −KX

components of W φ. And also for this section, for any φ ∈ Φ2 and i ≥ 0, let Γi(φ) :=
E[W φ

t (W φ)>t−i].
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Recall the definition of M1 from Section 3.5. Here we explicitly consider M1 as a function
on Φ2. That is, for any φ ∈ Φ2 let

M1(φ) := E
[
W φ
t ((Xφ

t )>, (Xφ
t−1)>)

]
.

Lemma A.3. Let q0(x1, . . . , xm), . . . , qn(x1, . . . , xm) be multivariate polynomials (ele-
ments of in R[x1, . . . , xm]). Let

q(α;x1, . . . , xm) := q0(x1, . . . , xm) + q1(x1, . . . , xm)α + . . .+ qn(x1, . . . , xm)αn,

i.e. a univariate polynomial in α (an element of R[α]) parametrized by (x1, . . . , xm). If
q(α;x1, . . . , xm) has n distinct roots for one (x1, . . . , xm) ∈ Rm, then

{(x1, . . . , xm) ∈
m

R : q(·;x1, . . . , xm) does not have n distinct roots}.

is a null set w.r.t. the m-dimensional Lebesgue measure on Rm.

Proof. Given two polynomials r(α), s(α), let S(r, s) denote their Sylvester matrix [Dick-
enstein and Emiris, 2010, Weisstein, 2015]. Keep in mind that all entries of the Sylvester
matrix S(r, s) are either 0 or coincide with a coefficient of r or s. Hence in particular,
all entries of S(r, s) are polynomials in the coefficients of r and s.

Given a non-zero polynomial p(α) = p0 + p1α + . . . + pdeg(p)α
deg(p), let ∆(p) denote its

discriminant, i.e.

∆(p) := p
2 deg(p)−2
deg(p)

∏
i<j

(αi − αj)2,

where α1, . . . , αdeg(p) are the deg(p) complex roots of p, with potential multiplicities.

Keep in mind the following equation [Dickenstein and Emiris, 2010, Weisstein, 2015]
that relates discriminant and Sylvester matrix: for all polynomials p(α) we have

(−1) 1
2 deg(p)(deg(p)−1)pdeg(p)∆(p) = det(S(p, p′)), (A.13)

where p′(α) is the derivative of p(α) w.r.t. α.
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Let
s(x1, . . . , xm) := det(S(q(·;x1, . . . , xm), q′(·;x1, . . . , xm))),

which is a multivariate polynomial in (x1, . . . , xm) based on the fact that the coefficients
of q(·;x1, . . . , xm) are multivariate polynomial in (x1, . . . , xm) and the determinant of
the Sylvester matrix is a multivariate polynomial in the coefficients of q(·;x1, . . . , xm).

By assumption there is one (x1, . . . , xm) ∈ Rm such that q(·;x1, . . . , xm) has n distinct
roots. Based on Equation (A.13) and the definition of ∆(q(·;x1, . . . , xm)), this implies
that for this (x1, . . . , xm), s(x1, . . . , xm) 6= 0. Based on Lemma A.1, s(x1, . . . , xm) 6= 0
for all (x1, . . . , xm) ∈ Rm \L, for some Lebesgue null set L.

Using Equation (A.13) again, we know that ∆(q(·;x1, . . . , xm)) 6= 0 for all (x1, . . . , xm) ∈
Rm \L. Hence q(·;x1, . . . , xm) has n distinct roots for all (x1, . . . , xm) ∈ Rm \L.

Proof of Proposition 3.2. Prerequisties:

Keep in mind that Φ2 = h−1(Θ2) and Ψ2 = h−1(S2).

Let  B̃(φ) C̃(φ)
0 Ẽ(φ

 := Ã(φ) := h1(φ).

Let H denote the set of those φ ∈ Φ2, for which C̃(φ) and M1(φ) have full rank. Let
H ′ denote the set of those φ ∈ Φ2, for which Ã(φ) is such that there exists U = (U1, U2)
such that the equation

(U1, U2)
 B̃(φ) C̃(φ)

I 0

 =
(
B̃(φ)2, B̃(φ)C̃(φ) + C̃(φ)Ẽ(φ)

)
, (A.14)

or equivalently

(U1, U2)
 C̃(φ) B̃(φ)

0 I

 =
(
B̃(φ)C̃(φ) + C̃(φ)Ẽ(φ), B̃(φ)2

)
(A.15)

160



Appendix A. Proofs and detailed algorithm for Chapter 3

is satisfied.

Keep in mind that Ψ2 = H ∩H ′.

Similar as in the proof of Proposition 1, it can be shown that

λ2K2−KXKZ
(Φ2 \H) = 0. (A.16)

It remains to show the same for H ′.

The case KZ = KX:

Let LC denote the set of those φ ∈ Φ2, for which C̃(φ) is not invertible. As usual (see
the proof of Proposition 3.1), Lemma A.1 implies that LC has Lebesgue measure zero.

For all φ ∈ R2K2−KXKZ , define U(φ) = (U1(φ), U2(φ)) as follows:

On R2K2−KXKZ \LC let

(U1, U2) :=
(
B̃C̃ + C̃Ẽ, B̃2

) C̃−1 −C̃−1B̃

0 I

 (A.17)

=
(
B̃ + C̃ẼC̃−1,−B̃2 − C̃ẼC̃−1B̃ + B̃2

)
(A.18)

=
(
B̃ + C̃ẼC̃−1,−C̃ẼC̃−1B̃

)
(A.19)

=
(
B̃ + C̃Ẽ det(C̃)−1adj(C̃),−C̃Ẽ det(C̃)−1adj(C̃)B̃

)
(A.20)

= det(C̃)−1
(
det(C̃)B̃ + C̃Ẽadj(C̃),−C̃Ẽadj(C̃)B̃

)
, (A.21)

where, as usual, adj denotes the adjugate of a matrix. Otherwise, on LC , let (U1, U2) :=
(0, 0) (or anything else since this case does not matter).

On R2K2−KXKZ \LC we have

det(TU(α))

= det(α2 I−U1α− U2)

= det(C̃)−KX det
(
det(C̃)α2 I−α

(
det(C̃)B̃ + C̃Ẽadj(C̃)

)
+ C̃Ẽadj(C̃)B̃

)
.
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Keep in mind that for any matrix Q, the determinant det(Q) as well as all entries of the
adjugate adj(Q), are multivariate polynomials in the entries of Q. (And obviously the
entries of Ã(φ), B̃(φ), C̃(φ), Ẽ(φ) are multivariate polynomials in φ.)

Hence

q̃(α, φ) := det
(
det(C̃(φ))α2 I−α

(
det(C̃(φ))B̃(φ) + C̃(φ)Ẽ(φ)adj(C̃(φ))

)
+C̃(φ)Ẽ(φ)adj(C̃(φ))B̃(φ)

)
(A.22)

is a multivariate polynomial in (α, φ) ∈ R×R2K2−KXKZ . And in particular, considering
φ as parameter vector,

q(α;φ) := q̃(α, φ)

is a univariate polynomial in α, whose coefficients are all multivariate polynomials in
φ. Note that q(α;φ) has degree 2KX for all φ ∈ R2K2−KXKZ \LC , since it is up to a
constant, which does not depend on α, equal to det(α2 I−U1α− U2).

We want to apply Lemma A.3 to q(α;φ). For this purpose we need to show that there
is a φ ∈ R2K2−KXKZ , such that q(α;φ) has 2KX distinct roots.

Let φ be such that

B̃(φ) = diag(1, 3, 5, . . . , 2KX − 1), (A.23)

C̃(φ) = I, (A.24)

Ẽ(φ) = diag(2, 4, 6, . . . , 2KX). (A.25)

For this φ we have

q(α;φ) = det(α2 I−α(diag(1, 3, 5, . . . , 2KX − 1) + diag(2, 4, 6, . . . , 2KX))

+ diag(1, 3, 5, . . . , 2KX − 1)diag(2, 4, 6, . . . , 2KX))

= (α2 − (1 + 2)α + 1 · 2)(α2 − (3 + 4)α + 3 · 4) · . . .

· (α2 − (2KX − 1 + 2KX)α + (2KX − 1)2KX)

= (α− 1)(α− 2)(α− 3)(α− 4) · . . . · (α− (2KX − 1))(α− 2KX + 2)

hence q(α;φ) has the distinct roots 1, 2, . . . , 2KX .
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Now Lemma A.3 implies that q(α;φ) has 2KX distinct roots for all φ ∈ R2K2−KXKZ \L,
for some L with λ2K2−KXKZ

(L) = 0.

Keep in mind that
det(TU(φ)(α)) = det(C)−1q(α;φ)

for all φ ∈ R2K2−KXKZ \LC . Hence det(TU(φ)(α)) has 2KX distinct roots for all φ ∈
RK2+K \(L ∪ LC). Moreover, for all φ ∈ R2K2−KXKZ \(L ∪ LC), U(φ) satisfies Equation
(A.14) by its definition. This implies (L∪LC)C ⊂ H ′ and in particular (H ′)C ⊂ L∪LC ,
where (·)C denotes the complement of a set, as usual. Hence λ2K2−KXKZ

((H ′)C) = 0.

Using the fact that ΨC
2 = (H∩H ′)C = HC∪(H ′)C and Equation (A.16) we can calculate

λ2K2−KXKZ

(
h−1(Θ2 \ S2)

)
= λ2K2−KXKZ

(Φ2 \Ψ2)

= λ2K2−KXKZ
(Φ2 ∩ΨC

2 )

= λ2K2−KXKZ
(Φ2 ∩ (HC ∪ (H ′)C))

= λ2K2−KXKZ
((Φ2 ∩HC) ∪ (Φ2 ∩ (H ′)C))

≤ λ2K2−KXKZ
(Φ2 ∩HC) + λ2K2−KXKZ

(Φ2 ∩ (H ′)C)

= 0.

Second, the case KZ < KX:

This case works similarly as the case KZ = KX .

Let Im denote the m×m identity matrix and 0m×n the m×n zero matrix. For the sake
of a simple notation, here we suppress the dependence on φ. Let

d := diag(2, 4, 6, . . . , 2(KX −KZ))
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and

B̂ := B̃,

Ĉ :=
 IKX−KZ

0KZ×(KX−KZ)

∣∣∣∣∣∣ C̃
 .

Ê :=
 d 0(KX−KZ)×KZ

0KZ×(KX−KZ) Ẽ

 .

Note that B̂, Ĉ, Ê all have dimension KX ×KX .

Now the argument is similar as for the case KZ = KX , except that we replace B̃, C̃, Ẽ
by B̂, Ĉ, Ê.

Let us briefly comment on two points.

First, similar as for the case KZ = KX , whenever Ĉ is invertible, we define

(U1, U2) :=
(
B̂Ĉ + ĈÊ, B̂2

) Ĉ−1 −Ĉ−1B̂

0 I

 . (A.26)

(The argument for C̃ to almost always have full rank and thus Ĉ almost always being
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invertible carries over from the case KZ = KX .) This implies that (U1, U2) satisfies

(U1, U2)
 IKX−KZ

C̃ B̃

0K×(KX−KZ) 0 I


= (U1, U2)

 Ĉ B̂

0 I


=
(
B̂Ĉ + ĈÊ, B̂2

)
=
B̃

 IKX−KZ

0KZ×(KX−KZ)

∣∣∣∣∣∣ C̃


+
 IKX−KZ

0KZ×(KX−KZ)

∣∣∣∣∣∣ C̃
 d 0(KX−KZ)×KZ

0KZ×(KX−KZ) Ẽ

 , B̃2


=
B̃

 IKX−KZ

0KZ×(KX−KZ)

∣∣∣∣∣∣ B̃C̃
+

 d

0KZ×(KX−KZ)

∣∣∣∣∣∣ C̃Ẽ
 , B̃2


=
B̃

 IKX−KZ

0KZ×(KX−KZ)

+
 d

0KZ×(KX−KZ)

∣∣∣∣∣∣ B̃C̃ + C̃Ẽ

 , B̃2


=
B̃

 IKX−KZ

0KZ×(KX−KZ)

+
 d

0KZ×(KX−KZ)

 , B̃C̃ + C̃Ẽ, B̃2

 ,
whenever Ĉ is invertible. Hence (U1, U2) also satisfies Equation (A.15), whenever Ĉ is
invertible.

Second, keep in mind how we, in the case KZ = KX , constructed the sample φ such
that q(α;φ) had 2KX distinct roots. We used equations (A.23) to (A.25). Note that
the way we constructed B̂, Ĉ, Ê here, there has to be a φ such that these equations hold
true for B̂, Ĉ, Ê instead of B̃, C̃, Ẽ. Now with the analogous calculation as in the case
KZ = KX , it follows that for this φ, q(α;φ) has 2KX distinct roots.
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A.4. Algorithm 1 in detail

Here we describe Algorithm 1 introduced in Section 3.7.1 in detail. The approach is
similar to the one in [Oh et al., 2005].

A.4.1. The Likelihood and its approximation

Here we assume the general model specified in Section 3.4.1 and additionally that for
each i = 1, ..., K the density pni

of the noise term N i
t is a mixture of pi Gaussians, i.e.,

pni
= ∑pi

c=1 πi,cN (ni|µi,c, σ2
i,c), where πi,c ≥ 0, ∑pi

c=1 πi,c = 1. In what follows, we denote
the values of the sample X1:L by x1:L, the values of the hidden variables Z1:L by z1:L,
and the values of the vectors V X

1:L, V
Z

1:L that select the mixture component of NX
1:L, N

Z
1:L

by vX1:L, v
Z
1:L.

We can write down the complete-data likelihood as

p(x1:L, z1:L, v
X
1:L, v

Z
1:L) =

[
L∏
l=1

p(vXl )p(vZl )
]
p(z1|vZ1 )

[
L∏
l=2

p(zl|zl−1, xl−1, v
Z
l )
]
p(x1|vX1 )

[
L∏
l=2

p(xl|xl−1, zl−1, v
X
l )
]
, (A.27)

where

p(vXl ) =
KX∏
i=1

p(vXl,i) =
KX∏
i=1

πi+KZ ,v
X
l,i
, (A.28)

p(vZl ) =
KZ∏
i=1

p(vZl,i) =
KZ∏
i=1

πi,vZ
l,i
, (A.29)

p(xl|xl−1, zl−1, v
X
l ) =N (xl|Bxl−1 + Czl−1 + µvX

l
,ΣvX

l
), (A.30)

p(zl|zl−1, xl−1, v
Z
l ) =N (zl|Ezl−1 +Dxl−1 + µvZ

l
,ΣvZ

l
), (A.31)

166



Appendix A. Proofs and detailed algorithm for Chapter 3

µvX
l

=(µKZ+1,vX
l,1
, ..., µK,vX

l,KX

)ᵀ, µvZ
l

= (µ1,vZ
l,1
, ..., µKZ ,v

Z
l,KZ

)ᵀ, (A.32)

ΣvX
l

=diag(σ2
KZ+1,vX

l,1
, ..., σ2

K,vX
l,KX

), ΣvZ
l

= diag(σ2
1,vZ

l,1
, ..., σ2

KZ ,v
Z
l,KZ

). (A.33)

Instead of maximizing the marginal likelihood p(x1:L), we maximize the EM lower bound
of p(x1:L), which leads to the EM algorithm. In the E-step, the posterior of the hidden
variables p(z1:L, v

X
1:L, v

Z
1:L|x1:L) is intractable because the number of Gaussian mixtures

grows exponentially with the length of the time series. Thus, approximations must be
made to make the problem tractable. We use a factorized approximate posterior

p(z1:L, v
X
1:L, v

Z
1:L|x1:L) ≈ q(z1:L|x1:L)q(vX1:L, v

Z
1:L|x1:L)

to approximate the true posterior based on the mean-field assumption. Then the varia-
tional EM lower bound can be written as

L =
∑

vX
1:L,v

Z
1:L

q(vX1:L, v
Z
1:L|x1:L)

∫
dz1:L q(z1:L|x1:L) ln p(x1:L, z1:L, v

X
1:L, v

Z
1:L)

−
∑

vX
1:L,v

Z
1:L

q(vX1:L, v
Z
1:L|x1:L) ln q(vX1:L, v

Z
1:L|x1:L)−

∫
dz1:L q(z1:L|x1:L) ln q(z1:L|x1:L)

=
L∑
l=1

∑
vX

l

q(vXl |x1:L) ln p(vXl ) +
L∑
l=1

∑
vZ

l

q(vZl |x1:L) ln p(vZl ) (A.34)

+
∑
vZ

1

q(vZ1 |x1:L)
∫
dz1 q(z1|x1:L) ln p(z1|vZ1 )

+
L∑
l=2

∑
vZ

l

q(vZl |x1:L)
∫
dzldzl−1 q(zl, zl−1|x1:L) ln p(zl|zl−1, xl−1, v

Z
l ) (A.35)

+
∑
vX

1

q(vX1 |x1:L) ln p(x1|vX1 )

+
L∑
l=2

∑
vX

l

q(vXl |x1:L)
∫
dzl−1q(zl−1|x1:L) ln p(xl|xl−1, zl−1, v

X
l )

−
∑

vX
1:L,v

Z
1:L

q(vX1:L, v
Z
1:L|x1:L) ln q(vX1:L, v

Z
1:L|x1:L) (A.36)

−
∫
dz1:L q(z1:L|x1:L) ln q(z1:L|x1:L) (A.37)
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A.4.2. The algorithm

In the variational E step, q(z1:L|x1:L) and q(vX1:L, v
Z
1:L|x1:L) are updated alternately by

maximizing the variational lower bound. The update rules are as follows

q(vX1:L, v
Z
1:L|x1:L)← 1

cvXvZ

exp
〈
ln p(x1:L, z1:L, v

X
1:L, v

Z
1:L)

〉
q(z1:L|x1:L)

, (A.38)

q(z1:L|x1:L)← 1
cz

exp
〈
ln p(x1:L, z1:L, v

X
1:L, v

Z
1:L)

〉
q(vX

1:L,v
Z
1:L|x1:L)

(A.39)

In (A.38), the expectation of the log-likelihood with respect to q(z1:L|x1:L) is calculated
as

〈
ln p(x1:L, z1:L, v

X
1:L, v

Z
1:L)

〉
q(z1:L|x1:L)

(A.40)

=
L∑
l=1

KX∑
i=1

ln p(vXl,i) +
L∑
l=1

K∑
i=1

ln p(vZl,i)

− 1
2

vZ∑
i=1


〈
(z1,i − µi,vZ

1,i
)2
〉
q(z1,i|x1:L)

σ2
i,vZ

1,i

+ 2 ln σi,vZ
1,i



− 1
2

L∑
l=2

KZ∑
i=1


〈(
zl,i − (Ezl−1)i − (Dxl−1)i − µi,vZ

l,i

)2
〉
q(zl,zl−1|x1:L)

σ2
i,vZ

l,i

+ 2 ln σi,vZ
l,i


− 1

2

KX∑
i=1

(x1,i − µi+KZ ,v
X
1,i

)2

σ2
i+KZ ,v

X
1,i

+ 2 ln σi+KZ ,v
X
1,i

+ const

− 1
2

L∑
l=2

KX∑
i=1


〈(
xl,i − (Czl−1)i − (Bxl−1)i − µi+KZ ,v

X
l,i

)2
〉
q(zl−1|x1:L)

σ2
i+KZ ,v

X
l,i

+ 2 ln σi+KZ ,v
X
l,i

 .
(A.41)

It can be seen that q(vX1:L, v
Z
1:L|x1:L) further factorizes as

[∏
l

∏
i q(vXl,i)

] [∏
l

∏
i q(vZl,i)

]
,

which means the posterior q(vX1:L, v
Z
1:L|x1:L) can be calculated separately for each channel.

The computational complexity is linear in the time series length, the number of time
series channels, and the number of Gaussian mixtures in each channel.
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(A.39) can be further expressed as

〈
ln p(x1:L, z1:L, v

X
1:L, v

Z
1:L)

〉
q(vX

1:L,v
Z
1:L|x1:L)

(A.42)

= −1
2

KZ∑
i=1

z2
1,i

∑
vZ

1,i

q(vZ1,i)
σ2
i,vZ

1,i

+
KZ∑
i=1

z1,i

∑
vZ

1,i

q(vZ1,i)µi,vZ
1,i

σ2
i,vZ

1,i


− 1

2

L∑
l=2

KZ∑
i=1

(zl,i − (Ezl−1)i)
2

∑
vZ

l,i

q(vZl,i)
σ2
i,vZ

l,i


+

L∑
l=2

KZ∑
i=1

(zl,i − (Ezl−1)i)

∑
vZ

l,i

q(vZl,i)
(
(Dxl−1)i + µi,vZ

l,i

)
σ2
i,vZ

l,i


− 1

2

L∑
l=2

KX∑
i=1

(xl,i − (Bxl−1)i − (Czl−1)i)2

∑
vX

l,i

q(vXl,i)
σ2
i+KZ ,v

X
l,i


+

L∑
l=2

KX∑
i=1

(xl,i − (Bxl−1)i − (Czl−1)i)

∑
vX

l,i

q(vXl,i)µi+KZ ,v
X
l,i

σ2
i+KZ ,v

X
l,i

+ const, (A.43)

which has the form of the joint log-likelihood function of a time-varying linear dynamical
system (LDS). The marginal posteriors p(zl|x1:L) and p(zl, zl−1|x1:L) can be obtained by
Kalman filter and smoothing algorithms.

In the M-step, we maximize the variational lower bound with respect to the parameters
given the marginal posterior distributions from the E-step. The update rules for the
parameters are given as follows

πi,c =


1
L

∑L
l=1 q(vZl,i = c|x1:L), i = 1, ..., KZ ,

1
L

∑L
l=1 q(vXl,i−KZ

= c|x1:L), i = KZ + 1, ..., K,
(A.44)
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µi,c =



1∑L

l=1 q(v
Z
l,i

=c|x1:L)

(
q(vZ1,i = c|x1:L)

(
〈z1,i〉q(z1,i|x1:L)

)
+∑L

l=2 q(vZl,i = c|x1:L)
(
〈zl,i〉q(zl,i|x1:L) −

(
E 〈zl−1〉q(zl−1|x1:L)

)
i
− (Dxl−1)i

))
,

i = 1, ..., KZ ,
1∑L

l=1 q(v
X
l,i−KZ

=c|x1:L)

(
q(vX1,i−KZ

= c|x1:L)x1,i−KZ

+∑L
l=2 q(vXl,i−KZ

= c|x1:L)
(
xl,i−KZ

−
(
C 〈zl−1〉q(zl−1|x1:L)

)
i−KZ

− (Bxl−1)i
))

,

i = KZ + 1, ..., K,
(A.45)

σ2
i,c =



1∑L

l=1 q(v
Z
l,i

=c|x1:L)

(
q(vZ1,i = c|x1:L)

(〈
z2

1,i − 2µi,cz1,i
〉
q(z1,i|x1:L)

)
+∑L

l=2 q(vZl,i = c|x1:L)
{

[zl,i − (Ezl−1)i − (Dxl−1)i]
2
q(zl,zl−1|x1:L)

−2µi,c
[
〈zl,i〉q(zl,i|x1:L) −

(
E 〈zl−1〉q(zl−1|x1:L)

)
i
− (Dxl−1)i

]}
+ µ2

i,c,

i = 1, ..., KZ ,
1∑L

l=1 q(v
X
l,i−KZ

=c|x1:L)

(
q(vX1,i−KZ

= c|x1:L)
(
x2

1,i−KZ
− 2µi,cx1,i−KZ

)
+∑L

l=2 q(vXl,i−KZ
= c|x1:L)

{[
xl,i−KZ

− (Czl−1)i−KZ
− (Bxl−1)i−KZ

]2
q(zl−1|x1:L)

−2µi,c
[
xl,i−KZ

−
(
C 〈zl−1〉q(zl−1|x1:L)

)
i−KZ

− (Bxl−1)i−m
]})

+ µ2
i,c,

i = KZ + 1, ..., K,
(A.46)

Ei =

 L∑
l=2

∑
vZ

l,i

q(vZl,i|x1:L)
σ2
i,vZ

l,i

〈
zl−1z

>
l−1

〉
q(zl−1|x1:L)


−1

(A.47)

 L∑
l=2

∑
vZ

l,i

q(vZl,i|x1:L)
σ2
i,vZ

l,i

(
〈zl−1zl,i〉q(zl,zl−1|x1:L)−

〈zl−1〉q(zl−1|x1:L) (Dxl−1)i − 〈zl−1〉q(zl−1|x1:L) µi,vZ
l,i

) , (A.48)
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Di =

 L∑
l=2

∑
vZ

l,i

q(vZl,i|x1:L)
σ2
i,vZ

l,i

xl−1x
>
l−1


−1 L∑

l=2

∑
vZ

l,i

q(vZl,i|x1:L)
σ2
i,vZ

l,i

xl−1
(
〈zl,i〉q(zl,i|x1:L)−

(E 〈zl−1〉q(zl−1|x1:L))i − µi,vZ
l,i

) , (A.49)

Ci =

 T∑
l=2

∑
vX

l,i

q(vXl,i|x1:L)
σ2
i+KZ ,v

X
l,i

〈
zl−1z

>
l−1

〉
q(zl−1|x1:L)


−1

(A.50)

 L∑
l=2

∑
vX

l,i

q(vXl,i|x1:L)
σ2
i+KZ ,v

X
l,i

〈zl−1〉q(zl−1|x1:L) (xl,i−

(Bxl−1)i − µi+KZ ,v
X
l,i

) , (A.51)

Bi =

 L∑
l=2

∑
vX

l,i

q(vXl,i|x1:L)
σ2
i+KZ ,v

X
l,i

xl−1x
>
l−1


−1 L∑

l=2

∑
vX

l,i

q(vXl,i|x1:L)
σ2
i+KZ ,v

X
l,i

xl−1 (xl,i−

(
C 〈zl−1〉q(zl−1|x1:L)

)
i
− µi+KZ ,v

X
l,i

) , (A.52)

where Ei, Di, Ci, and Bi denote the i-th row of E, D, C, and B respectively.
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Proof for Chapter 4

Most proofs for Chapter 4 were already contained in that chapter. Only the proof of
Lemma 4.1 was postponed and we present it here.

B.1. Proof of Lemma 4.1

X3X2

X1

Figure B.1.: W.l.o.g. we assume this causal DAG.

Proof of Lemma 4.1. We only treat the continuous case, the discrete case is straight
forward.

Recall our assumption that given a causal model M with causal DAG G = (V,E), for
each Xi ∈ V , the random variable fi(pai, Ni) has a density qi(xi; pai) w.r.t. the Lebesgue
measure. Note that this implies, that also in any post-interventional model MdoXi=x,
the random variables fMdo Xi=x

i (paMdo Xi=x

i , Ni) have densities w.r.t. the Lebesgue measure
which can easily obtained from the qi(xi; pai). Hence, w.l.o.g., we only prove the lemma
w.r.t. M .

In what follows, we will only consider the case where the causal DAG is fully connected,
the other cases work similarly. W.l.o.g. we assume the DAG in Figure B.1.
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Let q(x1, x2, x3) := ∏
i qi(xi; pai).

To see that q(x1, x2, x3) factorizes according to G, note that

p(x3|x2, x1) = q3(x3;x1, x2)q2(x2;x1)q1(x1)∫
q3(x3;x1, x2)q2(x2;x1)q1(x1)dx3

= q3(x3;x1, x2)q2(x2;x1)q1(x1)
q2(x2;x1)q1(x1)

= q3(x3;x1, x2).

Similarly one calculates p(x2|x1) = q(x2;x1) and p(x1) = q(x1).

It remains to show that q(x1, x2, x3) it is a density for the joint distribution P (X1, X2, X3).

Keep in mind that for measurable f, Y we have [Bogachev, 2007]
∫
Y (s)dPf(N)(s) =

∫
Y (f(r))dPN(r). (B.1)

Let [·] denote the characteristic function (i.e. it equals 1 if the statement inside the
brackets is true and 0 otherwise). Now we can calculate
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∫ a

−∞

∫ b

−∞

∫ c

−∞
q1(x1)q2(x2;x1)q3(x3;x1, x2)dx3dx2dx1 (B.2)

=
∫

[x1 ≤ a]
∫

[x2 ≤ b]
∫

[x3 ≤ c]dPf3(x1,x2,N3)(x3)dPf2(x1,N2)(x2)dPf1(N1)(x1) (B.3)

=
∫

[x1 ≤ a]
∫

[x2 ≤ b]
∫

[f3(x1, x2, n3) ≤ c]dPN3(n3)dPf2(x1,N2)(x2)dPf1(N1)(x1) (B.4)

=
∫

[x1 ≤ a]
∫

[f2(x1, n2) ≤ b]
∫

[f3(x1, f2(x1, n2), n3) ≤ c] (B.5)

dPN3(n3)dPN2(n2)dPf1(N1)(x1) (B.6)

=
∫

[f1(n1) ≤ a]
∫

[f2(f1(n1), n2) ≤ b] (B.7)∫
[f3(f1(n1), f2(f1(n1), n2), n3) ≤ c]dPN3(n3)dPN2(n2)dPN1(n1) (B.8)

=
∫

[f1(n1) ≤ a][f2(f1(n1), n2) ≤ b] (B.9)

[f3(f1(n1), f2(f1(n1), n2), n3) ≤ c]dPN1,N2,N3(n1, n2, n3) (B.10)

= E
[
[f1(N1) ≤ a][f2(f1(N1), N2) ≤ b][f3(f1(N1), f2(f1(N1), N2), N3) ≤ c]

]
(B.11)

= P (X1 ≤ a,X2 ≤ b,X3 ≤ c), (B.12)

where equations (B.4), (B.6), (B.8) follow by applying Equation (B.1), and Equation
(B.10) follow from the independence of the noise terms Ni.

This proofs that q(x1, x2, x3) is a density of P (X1, X2, X3) w.r.t. the Lebesgue measure.
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Proofs for Chapter 5

Here we present proofs for Chapter 5.

C.1. Generalized version and proof of Proposition 5.1

We start by stating and proving a generalization of Proposition 5.1.

Proposition C.1 (Generalization of Proposition 5.1). Let M0 be a FCM over discrete
variables that induces a GCM M . Let the triple (X, Y, Z) of (sets of) variables in M

be such that (Y ⊥⊥ An(Z)|Z)M (i.e., are d-separated [Pearl, 2000]) and X does not
influence W := Z \X. Let E be an arbitrary set of variables in M . Let

pZ(YdoX=x = y|e) :=
∑
w

p(y|doX = x,w)p(w|e). (C.1)

Then

D(p(YdoX=x|E)‖pZ(YdoX=x|E)) ≤ H(E|Z) (C.2)

(where p(YdoX=x|E) is defined w.r.t. M0 and pZ(YdoX=x|E) w.r.t. M).

This is a generalization of Proposition 5.1. To see this, let Z denote the set of root nodes
of M . This implies

pZ(YdoX=x = y|e) = p̃(YdoX=x = y|e)
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for pZ(YdoX=x = y|e) as defined above and p̃(YdoX=x = y|e) as defined as in Section 5.3.1.
But Proposition C.1 above applied to this pZ(YdoX=x = y|e) coincides with Proposition
5.1.

Proof. Let U1 be the set (tuple) of background variables that influence Z and U0 = U\U1.
Then

pZ(YdoX=x = y|e) (C.3)

=
∑
w

p(y|doX = x,w)p(w|e) (C.4)

=
∑
w,u0

p(y|doX = x,w, u0)p(w|e)p(u0|doX = x,w) (C.5)

=
∑
w,u0

p(y|doX = x,w, u0)p(w|e)p(u0|w) (C.6)

=
∑
w,u0

p(y|doX = x,w, u0)p(w|e)p(u0), (C.7)

where Equation (C.6) is due to the fact that the distribution of U0 is invariant and
X does not influence W , so W can be written as the same function of U0 in M0 and
(M0)doX=x; and Equation (C.7) is due to the fact that W ⊂ Z and Z ⊥⊥ U0 by definition
of U0.
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On the other hand, we have

p(YdoX=x = y|e) (C.8)

=
∑

u:p(u,e)>0
p(y|doX = x, u)p(u|e) (C.9)

=
∑

u0,u1:p(u0,u1,e)>0
p(y|doX = x, u0, u1)p(u0, u1|e) (C.10)

=
∑

u0,u1,w:p(u0,u1,e)>0
p(y, w|doX = x, u0, u1)p(u0, u1|e) (C.11)

=
∑

u0,u1,w:p(u0,u1,e),p(u0,u1,w)>0
p(y, w|doX = x, u0, u1)p(u0, u1|e) (C.12)

=
∑

u0,u1,w:p(u0,u1,e),p(u0,u1,w)>0
p(y|doX = x, u0, u1, w)p(w|doX = x, u1, u0)p(u0, u1|e)

(C.13)

=
∑

u0,u1,w:p(u0,u1,e),p(u0,u1,w)>0
p(y|doX = x, u0, w)p(w|doX = x, u1, u0)p(u0, u1|e) (C.14)

=
∑

u0,u1,w:p(u0,u1,e),p(u0,u1,w)>0
p(y|doX = x, u0, w)p(w|u1, u0)p(u0, u1|e) (C.15)

=
∑

u0,u1,w:p(u0,u1,e),p(u0,u1,w)>0
p(y|doX = x, u0, w)p(w|u0, u1, e)p(u0, u1|e) (C.16)

=
∑

u0,u1,w:p(u0,u1,e),p(u0,u1,w)>0
p(y|doX = x, u0, w)p(w, u0, u1|e) (C.17)

=
∑

u0,u1,w:p(u0,u1,e,w)>0
p(y|doX = x, u0, w)p(w, u0, u1|e) (C.18)

=
∑

u0,w:p(u0,e,w)>0
p(y|doX = x, u0, w)

∑
u1:p(u0,u1,e,w)>0

p(w, u0, u1|e) (C.19)

=
∑

u0,w:p(u0,e,w)>0
p(y|doX = x, u0, w)p(w, u0|e) (C.20)

=
∑
u0,w

p(y|doX = x, u0, w)p(w, u0|e), (C.21)

where Equation (C.14) is due to Markovianity and (Y ⊥⊥ An(Z)|Z)M , which implies
(Y ⊥⊥ U1|Z)M , and thus (Y ⊥⊥ U1|W )Mdo X=x

, Equation (C.15) follows from the fact
that X does not influence W , Equation (C.16) follows from the fact that U1 already
determines W .
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Note that p(w|e)p(u0) = 0 implies p(w, u0|e) = 0 and therefore

D[p(YdoX=x|E)‖pW (YdoX=x|D)]

is defined.

Now we can calculate

D[p(YdoX=x|E)‖pZ(YdoX=x|E)] (C.22)

=
∑
e

p(e)D[p(YdoX=x|e)‖pZ(YdoX=x|e)] (C.23)

≤
∑
e

p(e)D[p(W,U0|e)‖p(W |e)p(U0)] (C.24)

=
∑
e,w,u0

p(w, u0, e) log p(w, u0|e)
p(w|e)p(u0) (C.25)

=
∑
e,w,u0

p(w, u0, e) log p(w, u0, e)
p(w, e)p(u0) (C.26)

= I(W,E : U0) (C.27)

≤ I(Z,E : U0) (C.28)

= I(Z : U0) + I(E : U0|Z) (C.29)

= 0 + H(E|Z)− H(E|U0, Z), (C.30)

where inequality (C.24) follows from the monotonicity (which follows from the chain rule)
of the Kullback-Leibler divergence [Cover and Thomas, 1991] together with equations
(C.21) and (C.7), Equation (C.29) is the chain rule for mutual information, and I(W :
U0) = 0 is due to U0 not influencing W and Markovianity.

Note that, if we chose the set Z in the above proposition such that it is as “close” (in the
causal diagram) to Y as possible, this could yield better approximations pZ(YdoX=x =
y|e) than simply letting Z be the root nodes, as done in p̄(YdoX=x = y|e). We leave this
as a question for future work.

178



Appendix C. Proofs for Chapter 5

C.2. Proof of Proposition 5.2

Here we give a proof for Proposition 5.2.

Proof. We calculate

D(p(Z)‖p̄(Z)) (C.31)

≤ D(p(X0, . . . , XK , C)‖p(C)Πkp(Xk|C))

= D(p(C)p(X0|C)p(X1|X0, C) · · · p(XK |X0, . . . , XK−1, C)‖p(X)Πkp(Xk|C))

=
∑

x0,...,xK ,c

p(x0, . . . , xK , c) log p(c)
p(c)

p(x0|c)
p(x0|c)

p(x1|x0, c)
p(x1|c)

p(x2|x0, x1, c)
p(x2|c)

· · ·

· p(xK |x0, . . . , xK−1, c)
p(xK |c)

=
∑

x0,...,xK ,c

p(x0, . . . , xK , c) log p(c)
p(c)

p(x0|c)
p(x0|c)

p(x1, x0|c)
p(x1|c)p(x0|c)

p(x2, x0, x1|c)
p(x2|c)p(x0, x1|c)

· · ·

· p(xK , x0, . . . , xK−1|c)
p(xK |c)p(x0, . . . , xK−1|c)

= I(X1 : X0|C) + I(X2 : X0, X1|C) + . . .+ I(XK : X0, . . . , XK−1|C)

≤ H(X1|C) + H(X2|C) + . . .+ H(XK |C),

(C.32)

where inequality (C.31) follows from the monotonicity (which follows from the chain
rule) of the Kullback-Leibler divergence [Cover and Thomas, 1991].
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K. Marx. Zur Kritik der politischen ökonomie. BoD–Books on Demand, 2014.

F. McSherry and K. Talwar. Mechanism design via differential privacy. In Foundations of
Computer Science, 2007. FOCS’07. 48th Annual IEEE Symposium on, pages 94–103.
IEEE, 2007.

B. D. Meyer. Natural and quasi-experiments in economics. Journal of business &
economic statistics, 13(2):151–161, 1995.

185



Bibliography

J. M. Mooij, J. Peters, D. Janzing, J. Zscheischler, and B. Schölkopf. Distinguishing
cause from effect using observational data: methods and benchmarks. arXiv preprint
arXiv:1412.3773, 2014.

J. M. Mooij, J. Peters, D. Janzing, J. Zscheischler, and B. Schölkopf. Distinguishing
cause from effect using observational data: methods and benchmarks. Journal of
Machine Learning Research, 17(32):1–102, 2016.

S. M. Oh, A. Ranganathan, J. M. Rehg, and F. Dellaert. A variational inference method
for switching linear dynamic systems. Technical report, 2005.

K. Ostrowski, G. Mann, and M. Sandler. Diagnosing latency in multi-tier black-box
services. In 5th Workshop on Large Scale Distributed Systems and Middleware (LADIS
2011), volume 3, page 14, 2011.

P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, and A. Mer-
chant. Automated control of multiple virtualized resources. In Proceedings of the 4th
ACM European conference on Computer systems, pages 13–26. ACM, 2009.

J. Pearl. Causality. Cambridge University Press, 2000.

J. Pearl. Direct and indirect effects. In Proceedings of the Seventh Conference on
Uncertainty in Artificial Intelligence (UAI), pages 411–420, San Francisco, CA, 2001.
Morgan Kaufmann.

J. Pearl. Causal inference in statistics: An overview. Statistics Surveys, 3:96–146, 2009.

J. Pearl and E. Bareinboim. Transportability of causal and statistical relations: A formal
approach. In In Proceedings of the Twenty-Fifth National Conference on Artificial
Intelligence. AAAI Press, Menlo Park, CA, pages 247–254, 2011a.

J. Pearl and E. Bareinboim. Transportability of causal and statistical relations: A for-
mal approach. In Data Mining Workshops (ICDMW), 2011 IEEE 11th International
Conference on, pages 540–547. IEEE, 2011b.

E. Pereira. On solvents of matrix polynomials. Applied Numerical Mathematics, 47
(2):197 – 208, 2003. Second International Workshop on Numerical Linear Algebra -
Numerical Methods for Partial Differential Equations and Optimization.

186



Bibliography

J. Peters, J. M. Mooij, D. Janzing, B. Schölkopf, et al. Causal discovery with continuous
additive noise models. Journal of Machine Learning Research, 15(1):2009–2053, 2014.

J. Peters, D. Janzing, and B. Schölkopf. Elements of Causal Inference: Foundations and
Learning Algorithms. 2017. to appear at MIT press.

B. Ramachandran. Advanced theory of characteristic functions. Series in probability
and statistics. Statistical Pub. Society, 1967.

R. C. Rao. Information and the accuracy attainable in the estimation of statistical
parameters. Bull. Calcutta Math. Soc., 37:81–91, 1945. ISSN 0008-0659.

H. Reichenbach. The direction of time. University of California Press, Berkeley, 1956.

J. Robins and S. Greenland. Identifiability and exchangeability for direct and indirect
effects. Epidemiology, 3(2):143–155, 1992.

A. Roebroeck, E. Formisano, and R. Goebel. Mapping directed influence over the brain
using Granger causality and fMRI. Neuroimage, 25:230–242, 2005.

T. Schreiber. Measuring information transfer. Physical Review Letters, 85:461–464,
2000a.

T. Schreiber. Measuring information transfer. Phys. Rev. Lett., 85:461–464, Jul 2000b.

W. R. Shadish, T. D. Cook, and D. T. Campbell. Experimental and quasi-experimental
designs for generalized causal inference. Houghton, Mifflin and Company, 2002.

S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen. A linear non-gaussian acyclic
model for causal discovery. Journal of Machine Learning Research, 7:2003–2030, 2006.

A. Smith and H. C. Recktenwald. An Inquiry into the Nature and Causes of the Wealth
of Nations. Verlag Wirtschaft und Finanzen, 1986.

J. Snee, L. Carata, O. R. Chick, R. Sohan, R. M. Faragher, A. Rice, and A. Hopper.
Soroban: attributing latency in virtualized environments. In 7th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 15), 2015.

P. Spirtes, C. Glymour, and R. Scheines. Causation, prediction, and search. MIT,
Cambridge, MA, 2nd edition, 2000.

187



Bibliography

K. Steele and H. O. Stefánsson. Decision theory. In E. N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter
2016 edition, 2016.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,
1998.

D. Thistlewaite and D. Campbell. Regression-discontinuity analysis: an alternative to
the ex-post facto experiment. Journal of Educational Psychology, 51:309–317, 1960.

I. Tsamardinos, S. Triantafillou, and V. Lagani. Towards integrative causal analysis of
heterogeneous data sets and studies. Journal of Machine Learning Research, 13(Apr):
1097–1157, 2012.

J. Von Neumann and O. Morgenstern. Theory of games and economic behavior. Prince-
ton university press, 2007.

P. Weirich. Causal decision theory. In E. N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, winter 2016 edition,
2016.

E. Weisstein. Polynomial discriminant, 2015. MathWorld - A Wolfram Web Resource.
URL: http://mathworld.wolfram.com/PolynomialDiscriminant.html. Accessed:
2015-05-21.

N. Wiener. The theory of prediction. Modern mathematics for engineers, 1:125–139,
1956.

J. Woodward. Making things happen: A theory of causal explanation. Oxford University
Press, 2005.

W. Zheng, R. Bianchini, G. J. Janakiraman, J. R. Santos, and Y. Turner. Justrunit:
Experiment-based management of virtualized data centers. In Proc. USENIX Annual
technical conference, 2009.

188

http://mathworld.wolfram.com/PolynomialDiscriminant.html

	Index of notation
	Abstract
	Kurzzusammenfassung
	Introduction
	Motivation
	Structure

	Preliminaries and overview
	Preliminaries
	Mathematical concepts for causal modeling
	Meaning of ``causation''
	Learning causal models
	Causal models for decision making
	Contextualization

	Overview: outline and contributions
	Outline
	Main contributions of this thesis
	Contributions by the author of this thesis
	Underlying publications


	Causal inference from time series with hidden confounders
	Introduction
	Problem statement
	Outline of our approach
	Structure of this chapter

	Related Work
	Preliminaries: definitions and notation of time series
	Model assumptions
	Statistical model
	Underlying causal model
	How practical Granger causal inference can go wrong

	The Generalized Residual: Definition and Properties
	Theorems on identifiability and almost identifiability
	Assuming non-Gaussian, independent noise
	Assuming no influence from observed to hidden components
	Discussion of the genericity assumptions

	Estimation algorithms
	Algorithm based on variational expectation maximization
	Algorithm based on the covariance structure
	Model checking

	Experiments
	Synthetic data
	Real-world data

	Conclusions of this chapter

	Approximate causal inference by bounding confounding in i.i.d. settings
	Introduction
	Problem statement
	Outline of our approach
	Structure of this chapter

	Related work
	Preliminaries
	The relation between observed dependence, back-door dependence and causal effect
	Approximating the causal strength from X to Y
	Approximating the information flow from X to Y
	Bounding the Kullback-Leibler divergence between p(Y|X=x) and p(Y|doX=x)
	Approximating the Fisher information
	Approximating the effect of treatment on the treated from X to Y
	Approximating the differential effect of treatment on the treated from X to Y

	Prototypical application scenarios: integrating knowledge that bounds the back-door dependence
	A qualitative toy example
	Partial randomization scenario
	A variant of the regression discontinuity design

	Conclusions of this chapter

	Decision making in cloud computing via approximate causal models
	Introduction
	Problem outline
	Contributions
	Structure of this chapter

	Background in cloud computing
	Two approximations in causal modeling
	Structural counterfactuals and an approximation
	Approximate integration of causal knowledge

	Problem 1 – models for control and debugging – and our approach
	Problem statement
	Outline of an approach
	Application to toy scenarios and discussion of potential advantages over previous approaches

	Problem 2 – cost predictability versus privacy – and our approach
	Problem statement
	Sketch of an approach
	Application to toy scenario
	Discussion

	Experiments
	Control and debugging problem on simple but real cloud system
	Example of a more realistic cloud system
	Predictability-privacy problem on simulated data

	Related work
	Conclusions of this chapter

	Conclusions
	Conclusions on individual chapters
	A broader view on this thesis
	Causal models in this thesis and beyond

	Proofs and detailed algorithm for Chapter 3
	Proofs for Section 3.5
	Proofs for Sections 3.6.1 and 3.6.2
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3

	Discussion of the genericity assumptions: an elaboration of Section 3.6.3
	Genericity assumption in Theorems 3.1 and 3.2
	Genericity assumptions in Theorem 3.3

	Algorithm 1 in detail
	The Likelihood and its approximation
	The algorithm


	Proof for Chapter 4
	Proof of Lemma 4.1

	Proofs for Chapter 5
	Generalized version and proof of Proposition 5.1
	Proof of Proposition 5.2

	Bibliography

