
Mutual information

and Gödel incompleteness

Diplomarbeit

von

Philipp Geiger

Betreuer:

Dr. Wolfgang Merkle

Oktober 2012

Fakultät für Mathematik und Informatik

Ruprecht-Karls-Universität Heidelberg

Contents

1 Introduction 1

2 Preliminaries 4

2.1 Some basics . 4

2.1.1 Sequences . 5

2.1.2 Turing machines, computability, prefix-freeness 6

2.1.3 Computable reals, functions and measures 7

2.1.4 Randomized algorithms and randomized operators 8

2.2 Kolmogorov Complexity . 11

2.2.1 Definition . 12

2.2.2 Basic properties of prefix Kolmogorov complexity 13

2.2.3 The universal discrete semimeasure 16

2.3 Random sequences and Levin’s tests 18

2.3.1 Random sequences . 18

2.3.2 Tests for infinite sequences 19

2.3.3 Tests for finite sequences . 20

2.4 Church-Turing thesis and Gödel incompleteness 21

2.4.1 The Church-Turing thesis 21

2.4.2 Gödel’s incompleteness theorem and the universal partial

computable predicate . 22

2.4.3 Definability . 27

3 Mutual information 28

3.1 Mutual information for finite sequences 30

3.1.1 Definition and basic properties 30

i

3.1.2 Independence conservation inequalities 34

3.2 Mutual information for infinite sequences 39

3.2.1 Definition and basic properties 39

3.2.2 Independence conservation inequalities 43

3.3 The independence postulate . 48

3.3.1 The postulate . 48

3.3.2 An attempt of justification 49

3.3.3 A critical discussion . 51

4 Forbidden information 54

4.1 The forbidden information theorem 54

4.1.1 The theorem . 55

4.1.2 The proof . 56

4.2 Some implications . 62

4.2.1 A version for two infinite sequences 62

4.2.2 Two probabilistic assertions 64

4.3 Consequences for the completion of PA 66

4.3.1 Extending Gödel’s incompleteness theorem to randomized

operators . 68

4.3.2 Extending Gödel’s thesis using the independence postulate . 68

5 Conclusion 71

Bibliography 73

ii

1 Introduction

Peano arithmetic has no computable consistent completion - this is the content of

Gödel’s first incompleteness theorem.1 It was probably the most surprising result

that has been found in the context of Hilbert’s program, which calls for a for-

malization and axiomatization of all of mathematics, together with a “finitary”

consistency proof for this axiomatization.2 It is important to see however, that

Gödel’s result entails no assertion regarding the general realizability of consistent

completions of Peano arithmetic. By basic results of mathematical logic, for every

consistent axiomatic system there is a consistent completion. Gödel’s result only

entails the assertion that the consistent completion of Peano arithmetic is impos-

sible by effectively calculable methods - if we accept the Church-Turing thesis.

Levin in his paper “Forbidden Information” [Lev10] argues that we can signif-

icantly expand this assertion to other than effectively calculable methods. His

argumentation can be outlined as follows.

Given any sequence, computing a consistent completion of Peano arithmetic rela-

tive to this sequence is equivalent to computing a total extension of the universal

partial computable predicate u relative to this sequence. Due to what we will call

the forbidden information theorem, every sequence that computes a total exten-

sion of u has infinite mutual information with the halting probability Ω. If we

1Note that the idea behind Gödel’s first incompleteness theorem is not only applicable to Peano
arithmetic, but to any formal system that has a certain expressive power. Furthermore, note
that what Gödel originally proved was a slightly different and weaker theorem (it was extended
by Rosser). The version of the first incompleteness theorem we refer to here is the one that
is used by Ebbinghaus, Flum and Thomas [EFT94], among others.

2For further information on Hilbert’s program, see Zach [Zac09].

1

accept Levin’s independence postulate, then no sequence generated by any locat-

able physical process may have infinite mutual information with Ω. So we can

conclude the following extension of Gödel’s incompleteness assertion, which we

will call the forbidden information thesis: no sequence that is generated by any

locatable physical process is a consistent completion of Peano arithmetic.

Levin’s exposition of the argumentation we just outlined is, however, rather sketchy

and difficult to follow in some parts. Moreover, he tends to implicitly use results

without explicitly mentioning them or indicating where they were proved.

The main objective of the present work is to completely and critically elaborate

Levin’s argumentation. To present a complete argumentation, we gathered up all

major underlying mathematical concepts, assertions and proofs (if available) from

a variety of sources, discuss them in a detailed manner, and prove some small but

necessary assertions ourselves. And to allow a critical assessment, we try to weigh

thoroughly the validity of all non-mathematical arguments.

In concrete terms, we will proceed as follows. In the second chapter we lay down

the foundations we need throughout the work. We clarify notational conventions,

introduce the concepts of Kolmogorov complexity, random sequences, and tests.

And we will translate the problem of the consistent completion of Peano arith-

metic into the computability theoretic problem of finding a total extension of the

universal partial computable predicate u.

In the third chapter, we give a detailed account of the concept of mutual informa-

tion, which is the most important instrument Levin uses in “Forbidden Informa-

tion”, and which turns out to be quite interesting by itself. Besides some basic

properties, we will present the independence conservation inequalities, which are

due to Levin. We then use these inequalities to argue for the independence postu-

late. This is a non-mathematical assertion (similar to the Church-Turing thesis)

which is central to Levin’s argumentation. Afterwards we critically discuss the

postulate.

While the first two chapters mainly served as preparation, the fourth and last

chapter contains the actual argumentation in “Forbidden Information”. First, we

2

present the forbidden information theorem and give a more detailed proof than

Levin does in his paper. Based on this theorem and the previous results, we will

eventually argue for the forbidden information thesis we mentioned above.

Before getting into details, we want so say a few words to justify our interest in

the subject-matter of the present work. Generally, there are various purposes of

mathematical research, such as solving real-world problems or gaining knowledge

which is interesting by itself for mathematical reasons. Another important purpose

- which is also one aim of the present work - is to promote knowledge that is

interesting by itself since it is philosophical knowledge. Keep in mind, that “What

can I know?” is the first of three questions that were stated by Kant to describe

the central interests of human reason ([Kan29], A805). The forbidden information

thesis can be seen as an (attempt of a) partial answer to this question, since it

states a definite limit for formal mathematical knowledge.3 Note, that also Gödel’s

incompleteness assertion can be philosophically interpreted this way.

3It should be mentioned that Kant was mainly looking for a priori answers to this question in
the “Critique of Pure Reason” [Kan29], whereas the partial answer we discuss in the present
work is rather a posteriori, since we take into account physical considerations.

3

2 Preliminaries

We start with clarifying notational conventions and stating basic results we will

need throughout the work. The first section mainly contains notational basics that

are commonly used. Afterwards, we introduce Kolmogorov complexity and discuss

some basic properties. Then we define random sequences and introduce tests as

they are defined by Levin. And finally, we will discuss the Church-Turing thesis

and translate the problem of finding a consistent completion of Peano arithmetic

into the computability theoretic problem of finding a total extension of a universal

partial computable predicate. The latter result is the only one from Chapter 2 that

will directly appear in the final argumentation in favor of the forbidden information

thesis 4.14.

The definitions and theorems of Sections 2.1 through 2.3 are in general taken from

the monographs by Li and Vitanyi [LV08], and Downey and Hirschfeldt [DH10],

and Levin’s 1974 paper [Lev74]. For backgrounds on Section 2.4, we refer to the

monographs by Odifreddi [Odi92], Ebbinghaus, Flum and Thomas [EFT94], and

Downey and Hirschfeldt [DH10], and the paper “Church’s Thesis and Principles

for Mechanisms” by Gandy [Gan80].

2.1 Some basics

Besides discussing some basics with respect to sequences, Turing machines and

computability, we will explain, what we mean by randomized algorithms and op-

erators.

4

Throughout the work, we will often consider equalities and inequalites, that hold

only up to an additive or multiplicative constant. We will use the relation symbols

“
+
=”, “

∗
=” and “

+
<”, “

+
>”, “

∗
<”, “

∗
>” in those cases.

2.1.1 Sequences

We denote the set of binary strings, which we may also call simply “strings” or

“finite (binary) sequences”, by {0, 1}∗ and the set of infinite binary sequences,

which we may also call “infinite sequences” or simply “sequences”, by {0, 1}∞.

We identify infinite sequences, subsets of N, and functions of the form N→ {0, 1}
in the usual manner. For a finite or infinite sequence a and any i ∈ N, we denote

by a(i) the symbol at the i-th position of a and by a� i the prefix of length i of a.

For example 1110(3) = 0, 1110� 2 = 11. For a string x ∈ {0, 1}∗ we denote its

length by `(x), for example `(1110) = 4. For two strings x, y ∈ {0, 1}∗ we denote

their concatenation by xay or simply xy. By ε, we denote the empty string. We

generally identify strings and natural numbers using the following bijection

N : {0, 1}∗ → N,

x 7→ N(x) := 2`(x) − 1 +
∑

0≤i<`(x)

x(i) · 2i.

Note that by the above definition and identification, for all n ∈ N

`(n) = `(N−1(n))
+
= log n.

By log we mean the logarithm to base 2. We fix a pairing function 〈·, ·〉 on finite

and infinite sequences. For x, y ∈ {0, 1}∗, α, β ∈ {0, 1}∞ let

〈x, y〉 :=
1

2
(x+ y)(x+ y + 1) + y,

〈α, β〉 := α(0)β(0)α(1)β(1)α(2)β(2)

We define the generalizations of the pairing function for arbitrary n-tuples in the

usual way (by iterative use of the pairing function) and denote them by 〈·, ·, . . . , ·〉n.

5

For the sake of convenience, we may drop the n in the index. For x ∈ {0, 1}∗ let

x := x(0)x(0)x(1)x(1) . . . x(`(x)− 1)x(`(x)− 1)01.

For x ∈ {0, 1}∗ and a ∈ {0, 1}∗ ∪ {0, 1}∞ we mean by x v a that x is a prefix or

initial segment, respectively, of a. We denote the cylinder set defined by x, i.e.

{α ∈ {0, 1}∞ : x v α}, by JxK.

2.1.2 Turing machines, computability, prefix-freeness

We define Turing machines and oracle Turing machines in the usual way. We

restrict to the tape alphabet {0, 1,�}. By dom(M) we denote the domain of

a Turing machine M . As usual, when we talk about the functioning of some

oracle machine M , by Mα we mean the machine with the sequence α written on

its oracle tape. We also allow strings as oracles but we stipulate that in case

the machine attempts to make any queries beyond the length of the string, the

computation automatically diverges; so for a fixed input, the finite oracles that

yield a terminating computation form a prefix-free set. Keep in mind that a set

S ⊂ {0, 1}∗ is called prefix-free, if for all x, y ∈ S: if x v y, then x = y.

By ϕM , we denote the partial function computed by a Turing machine M . For

convenience, we mostly write M(x) instead of ϕM(x), for any x. If M is an

oracle Turing machine, ΦM denotes the partial functional computed by M , i.e.

ΦM : {0, 1}∞ → {0, 1}∞. For convenience, we mostly write Mα(x) instead of

ΦM(α)(x), for any α, x. We call a total function f : {0, 1}∞ → {0, 1}∞ an algo-

rithmic operator, if there is an oracle Turing machine M , such that f = ΦM .

For a Turing machine M and input x, by M(x) ↓ we mean that M terminates on

input x and by M(x) ↑ we mean that M does not terminate on input x. For two

partial functions ϕ, ψ on N, and n ∈ N, by ϕ(n) ∼= ψ(n) we mean that either both

functions are defined on n and ϕ(n) = ψ(n) or both functions are undefined on

n.

We call a (partial) function f : ⊆ N → N (partial) computable, if f = ϕM for

some Turing machine M . Given some sequence α, we call f (partial) computable

6

in α or α(-partial)-computable, if f = ΦM(α), for some oracle Turing machine

M . A set A ⊆ N is called computable, if its characteristic function is computable

and computably enumerable, if it is the domain of a partial computable function.

We may say recursive instead of computable. We call a function f : N → N
lower semicomputable, if the sets {n ∈ N : n ≤ f(m)} are uniformly computably

enumerable in m, and upper semicomputable, if −f is lower semicomputable.

We will consider a special kind of Turing machines, namely prefix-free Turing

machines. We call a Turing machine M prefix-free, if dom(ϕM) is prefix-free.

Furthermore, we call an oracle Turing machine M prefix-free, if for any finite

oracle x ∈ {0, 1}∗, dom(ΦM(x)) is prefix-free and for any infinite oracle α ∈
{0, 1}∞, dom(ΦM(α)) is prefix-free. Similar to the well-known universal oracle

Turing machines, there is a universal prefix-free oracle Turing machine which we

denote by U.1 More precisely, for all prefix-free oracle Turing machines M , there

is a string pM , such that

Ua(pM
ax) ∼= Ma(x), for all a ∈ {0, 1}∗ ∪ {0, 1}∞, x ∈ {0, 1}∗.

Note that there are (infinitely) many universal prefix-free oracle Turing machine,

but we picked out one.

2.1.3 Computable reals, functions and measures

By reals we generally mean elements of [0, 1]. We may identify an infinite binary

sequence α with the real 0.α in [0, 1] (obviously this is not an actual bijection, as

there are reals with more than one binary representations; but that does not matter

for our purposes). We call a real r computable, if r may be binary represented

by 0.α, for some computable α ∈ {0, 1}∞. We say a real r is left-computably

enumerable (or left-c.e.), if there is a computable, monotone increasing sequence

1For further details on the construction of the universal prefix-free (oracle) Turing machine,
which makes use of a correspondence between prefix-free and so-called self-delimiting (oracle)
Turing machines, see for example Downey and Hirschfeldt [DH10].

7

(qi)i∈N ⊂ Q such that limi→∞ qi = r. (We represent rational numbers by natural

numbers using the pairing function.)

Let us turn to real-valued functions. We call a function f : {0, 1}∗ → [0, 1]

computable, if there is a computable, rational-valued function g(·, ·), such that

|f(x) − g(x, k)| < 1
k
, for all k. We call f : {0, 1}∗ → [0, 1] lower semicomputable

(or left-c.e.), if there is a computable, rational-valued function g(·, ·), such that

g(x, k) ≤ g(x, k + 1), for all x, k, and limk→∞ g(x, k) = f(x), for all x. (Note

that this is more or less a generalization of lower semicomputability for integer

functions.)

The important real-valued functions we consider are measures. It should be clear

now, what we mean by a computable (or lower semicomputable) measure on

{0, 1}∗, which we call discrete. But how to treat measures on {0, 1}∞, which

we call continuous, in terms of computability?

First note, that we restrict our attention to measures on the Borel σ-algebra B

generated by the set of cylinder sets, i.e. {JxK : x ∈ {0, 1}∗}. (Keep in mind that

when we speak of “measures on {0, 1}∞” we actually mean measures on B.) B is

uncountable, so how can functions on B be anyhow “computable”? Let us consider

the set R of all finite unions of cylinder sets, which is a ring (in the set-theoretic

sense). By basic results of measure theory, any measure P on B is already uniquely

determined by its values on R. But the values of P on R are already determined

by its values on the cylinder sets.

Therefore, we simply say that a probability measure P on B is computable, if the

mapping x 7→ P (JxK) is computable. Although P has an uncountable domain, this

way of speaking makes sense, since by the above consideration the algorithm that

computes the mapping x 7→ P (JxK) fully determines P .

2.1.4 Randomized algorithms and randomized operators

For the interpretation of the independence conservation inequalities in Chapter 3,

we will need the notions of randomized algorithms (for strings) and randomized

8

operators (the analogon for sequences). In what follows, we will particularly proof

the computability of the output probability distribution for such algorithms and

operators.

Randomized algorithms

By a randomized algorithm we mean a (total) Turing machine M , that has an

auxiliary “randomness tape”. The randomness tape has infinite sequences written

on it2 and we consider these sequences distributed according to a computable

probability distribution Q on {0, 1}∞. Note that we may consider the pair (M,Q)

instead of only M as the randomized algorithm. We assume that for any input

and any random sequence, M terminates.

We will be particularly interested in the probability that M computes y on input

x, which we denote by Px(y) for the moment. With an argumentation similar to

the one for (compositions of) randomized operators (see the following section), it

is easy to see that (x, y) 7→ Px(y) is computable in the sense of Section 2.1.3.

Randomized operators on infinite sequences

Let us now turn to randomized operators on infinite sequences, which should be

seen as an analogon to randomized alogorithms on finite sequences. We define a

randomized operator as an oracle machine M , that gets the input sequence written

on the oracle tape, a random sequence written on an auxiliary randomness tape

and that step-by-step writes an infinite sequence on the output tape (by running

infinitely long). (Obviously we deviate a bit from the standard definition of the

Turing machine by allowing infinite output sequences but this is necessary.) As

above, we consider the random sequence as distributed according to a computable

probability distribution Q. Again, we may consider the pair (M,Q) instead of only

M as the randomized operator.

2In many cases, only randomized algorithms that have access to a fixed number of (uniformly
distributed) random bits are considered. But having in mind the very general claim of the
independence postulate in Chapter 4, we want to consider a more general concept.

9

In Section 3.3 we will work with a finite composition of randomized operators. By

such a composition we mean that one operator writes its infinite output on the

oracle tape of the next one. (Note that every operator of the composition has its

own randomness tape.) We will be particularly interested in the probability that

the composition of operators, on input α, computes a sequence with the initial

segment z, which we denote by Pα(JzK) for the moment. By the following simple

argumentation, Pα(JzK) is α-computable.

We argument by induction. Let n be the number of random operators the compo-

sition consists of. We assume that P ′α(JwK), the probability that the composition

of the first n−1 operators outputs a sequence starting with the prefix w, on input

α, is α-computable. Let (M,Q) be the n-th operator.

Let Sz denote the set of pairs 〈x, y〉, such that at some point of time M hast just

written the last bit of z on the output tape, after it has exactly read x on the

oracle tape and y on the randomness tape. Let

S̃l := {〈x, y〉 : 〈x, y〉 ∈ Sz, for some z with `(z) = l}.

By König’s lemma, S̃`(z) is finite for all z and uniformly computable in z. Therefore,

Sz is finite and uniformly computable in z. Furthermore, note that for all z and

〈x, y〉, 〈x′, y′〉 ∈ Sz, x is incomparable to x′ (i.e. one can be no prefix of the other)

and y is incomparable to y′.

Hence, for all z we have3

Pα(JzK) = P ′α ⊗Q

 ⋃
〈x,y〉∈Sz

JxK× JyK

 =
∑
〈x,y〉∈Sz

P ′α(JxK) ·Q(JyK).

So Pα(JzK) is α-computable.

3We take the product measure P ′α⊗Q since it is the unique measure on the product space that
makes the input sequence and the random sequence stochastically independent (we assume
their independence) and that preserves the measures P ′α and Q on “their spaces”.

10

2.2 Kolmogorov Complexity

We turn to Kolmogorov complexity now, which is considered in algorithmic infor-

mation theory. This is the first topic we want to discuss more detailed as it will play

a central role throughout this work. The aim is to quantize information based on

algorithmic considerations. It should be mentioned, that Kolmogorov complexity

serves as a central tool in the proof of the forbidden information theorem 4.1 and

thus also for our argumentation in favor of an extension of Gödel’s incompleteness

assterion, which culminates in the forbidden information thesis 4.14.

The general idea behind measures of information (also within Shannon’s prob-

abilistic information theory4) is the following: We have a fixed set of possible

messages from which one message is chosen and thereby actual information is

produced. Furthermore, we have a description system (or “code”) for our set of

possible messages, consisting of finite sequences over a fixed alphabet. Now the

quantity of information contained in a selected message is defined as the optimal5

length of a description for the message (or stated differently, the optimal number

of choices to determine the message using the symbols of the fixed alphabet).

In our case, i.e. Kolmogorov complexity, we implement this general idea as follows.

The fixed set of possible message is the set of binary strings. Our description

system consists (again) of binary strings, from which we, by algorithmical means,

can construct the original messages. Now the optimal description for a selected

messages is simply interpreted as the shortest one.6

Note that in the history of the field of algorithmic information theory, several

attempts were made regarding the precise definition of an algorithmic measure

4For further information, see MacKay [Mac03].
5In probabilistic information theory, this optimality is interpreted in the “stochastically global”

sense, i.e. if the messages are chosen according to a fixed probability distribution, then the
expected length of the corresponding codewords should be shortest possible. Note that the
entropy is simply the expected codeword length for an optimal code for the distribution, e.g.
the Shannon-Fano code. For further details on this topic, see MacKay [Mac03].

6We can approach Kolmogorov complexity from a more practical direction, too. Most people
that use computers should be familiar with “ZIP” programs, i.e. data compression software.
Kolmogorov complexity gives us a lower bound for how far we can compress given data.

11

of information (such as plain Kolmogorov complexity, monotone complexity). In

the present work, we will only use prefix Kolmogorov complexity. Note that for

the sake of simplicity, we will generaly drop the “prefix” and only speak of “Kol-

mogorov complexity”!

2.2.1 Definition

As already mentioned, the Kolmogorov complexity of a given string is roughly

speaking the length of the shortest codeword from which we can algorithmically

reconstruct the string. Now we first define plain Kolmogorov complexity, but only

as a means to define (prefix) Kolmogorov complexity afterwards.

Definition 2.1. Let M be a Turing machine and x, y ∈ {0, 1}∗. We define

CM(x|y) := min{`(p) : My(p) = x},

which we call plain Kolmogorov complexity of x relative to y, with respect to M ,

with min ∅ :=∞.

We write CM(x) = CM(x|ε) and call it plain Kolmogorov complexity of x, with

respect to M .

We also want to consider infinite sequences in the conditional part of plain Kol-

mogorov complexity, so we immediately extend the definition.

Definition 2.2. Let M be an oracle Turing machine and x ∈ {0, 1}∗, α ∈ {0, 1}∞.

We define

CM(x|α) := min{`(p) : Mα(p) = x},

with min ∅ :=∞.

As already mentioned, we only work with prefix Kolmogorov complexity in the

present work, where we generally drop the “prefix”. For its precise definition, we

need the universal prefix-free oracle Turing machine U (defined in Section 2.1.2).

12

Definition 2.3. Let x ∈ {0, 1}∗, a ∈ {0, 1}∗ ∪{0, 1}∞. We define the Kolmogorov

complexity of x relative to a as

K(x|a) := CU(x|a).

We write K(x) := K(x|ε).

Remark 2.4. For prefix-free Turing machines M we sometimes also write KM

instead of CM .

Remark 2.5. Note the important fact, that for any other universal prefix-free oracle

Turing machine U we have

K(x|a)
+
= KU(x|a), for all x ∈ 0, 1∗, a ∈ {0, 1}∗ ∪ {0, 1}∞

(which is more or less due to Theorem 2.9 below). So our definition does depend

on the universal prefix-free oracle Turing machine we fixed only up to an additive

constant.

We extend the definition of Kolmogorov compexity to tuples of strings.

Definition 2.6. For x1, x2, . . . , xm ∈ {0, 1}∗ and a1, a2, . . . , an ∈ {0, 1}∗ ∪ {0, 1}∞

we define

K(x1, x2, . . . , xm|a1, a2, . . . , an) := K(〈x1, x2, . . . , xm〉|〈a1, a2, . . . , an〉).

We want to fix some optimal description for a given string.

Definition 2.7. For strings x, y ∈ {0, 1}∗ the operator ∗(y) is defined by x∗(y)

being the string p for which the calculation of Uy(p) first diverges, among all p

with Uy(p) = x and `(p) = K(x|y). Furthermore, let x∗ := x∗(ε).

2.2.2 Basic properties of prefix Kolmogorov complexity

We proceed with presenting some basic statements about Kolmogorov complexity.

First, we want to state one fundamental fact about Kolmogorov complexity that

13

weakens its practicability a bit.

Theorem 2.8. The function (x, y) 7→ K(x|y) is not computable, though upper

semicomputable i.e., the sets {n ∈ N : n ≥ K(x|y)} are uniformly computably

enumerable in (x, y).

It immediately follows from the universality of U that K, as defined above, is, up

to an additive constant, minimal.

Theorem 2.9. If M is a prefix-free oracle Turing machine, then there is a constant

cM , such that for all x ∈ 0, 1∗, a ∈ {0, 1}∗ ∪ {0, 1}∞ we have

K(x|a) ≤ KM(x|a) + cM .

For any string x, we can obviously compute (x,K(x)) from x∗, and vice versa, so

the following equality holds.

Theorem 2.10. For all x ∈ {0, 1}∗, a ∈ {0, 1}∗ ∪ {0, 1}∞ we have

K(x∗|a)
+
= K(x,K(x)|a).

Let us now state a “triangle inequalitiy”.

Theorem 2.11. Let x, y, z ∈ {0, 1}∗. Then we have

K(x|y)
+
< K(x, z|y)

+
< K(x|z) + K(z|y).

Proof. The first inequality is obvious. Regarding the the second one: From

z∗(y)ax∗(z) and oracle y we can first compute z and then also x (we can con-

struct a prefix-free oracle machine My that splits up z∗(y)ax∗(z), using Uy and the

prefix-freeness of its domain). Moreover `(z∗(y)ax∗(z)) = K(x|z) + K(z|y).

We state two inequalities regarding K.

14

Theorem 2.12. The following inequalities hold true for all x, y ∈ {0, 1}∗, a ∈
{0, 1}∗ ∪ {0, 1}∞:

(i) K(x, y|a)
+
< K(x|a) + K(y|a).

(ii) If f is a computable function, then K(f(x)|a)
+
< K(x|a).

Now we present two upper bounds for prefix Kolmogorov complexity.

Theorem 2.13. For all x ∈ {0, 1}∗ the following inequalities hold true:

(i) K(x)
+
< 2 `(x).

(ii) K(x)
+
< `(x) + K(`(x)).

The following theorem will be important for the next section. Have in mind the

famous Kraft-McMillan theorem, which establishes a tight link between prefix-

free codes and mass functions. It states that, given some set of strings A =

{a0, a1, . . .}, the following holds true: “If C is a prefix-free binary code for A,

then
∑

x∈A 2`(C(x)) ≤ 1. Conversely, if (l0, a0), (l1, a1), . . . is a sequence of pairs of

codeword lengths and strings satisfying Kraft’s inequality, i.e.
∑

i∈N 2li ≤ 1, then

there is prefix-free code C, such that `(C(ai)) = li, for all i.” What follows now is

an effective version of the second direction of the Kraft-McMillan theorem.

Theorem 2.14 (KC theorem). Let (di, xi)i∈N ⊂ (N×{0, 1}∗)N be an A-computable

sequence, for some A ⊂ N, such that∑
i∈N

2−di ≤ 1.

Then there is a prefix-free oracle Turing machine M , and a prefix-free set of strings

{y1, y2, . . .} so that `(yi) = di and MA(yi) = xi, for all i ∈ N.

15

2.2.3 The universal discrete semimeasure

There is a different approach towards Kolmogorov complexity, that mainly Levin

takes (see e.g. [Lev84], [Lev10]). He first introduces the so-called universal discrete

semimeasure as a universal element of the set of all discrete semimeasures (see

Definition 2.15 below) and based upon this, he defines Kolmogorov complexity

and particularly mutual information, which we will discuss later. Though we do

not follow Levin in taking the universal discrete semimeasure as basic term, we

will make some use of it throughout this work, so we shortly want to discuss it

now.

Definition 2.15. A function f : {0, 1}∗ → [0, 1] is called a discrete semimeasure

if ∑
x∈{0,1}∗

f(x) ≤ 1.

A lower semicomputabel discrete semimeasure which multiplicatively, up to a con-

stant factor, majorizes every other lower semicomputabel semimeasure is called

universal. We may call such a semimeasure simply universal measure, as well.

Not too surprising, since we deal with a family of (semi-)computable functions, in

fact there is a universal measure.7

Theorem 2.16 (Existence of the universal measure). There is a universal lower

semicomputable discrete semimeasure.

Within this section, let m denote the universal measure whose existence is guar-

anteed by the above theorem.

Remark 2.17 (Output probability Q). There is an interesting function on {0, 1}∗,
which we call Q and which can be closely linked to K and m (see Theorem 2.18

7Note that the fundamental idea of a “universal object” that is included in Turing’s universal
Turing machine has a wide range of implementations in this work (we will define the so-called
universal partial computable predicate later). Levin seems to have been strongly inspired by
this fundamental idea.

16

below): the “probability” that our universal prefix-free Turing machine U outputs

some string x. We can define it by

Q(x) := QU(x) :=
∑

p:U(p)=x

2`(y) = λ(J{p ∈ {0, 1}∗ : U(p) = x}K),

based on the idea, that we declare the probability of p ∈ dom(U) to be 2`(p); λ

denotes the uniform distribution on {0, 1}∞, i.e. the measure that is (uniquely)

determined by λ(JxK) = 2− `(x), for all x.

Now we present the promised link between K, m and Q. Its proof is heavily based

on the KC theorem 2.14.

Theorem 2.18. We have

m(x)
∗
= 2−K(x) ∗= Q(x).

For practical reasons we will, instead of the above defined m, from now on fix the

following function m as universal measure, extending the original definition 2.15

of a universal measure a litte bit by allowing a conditional argument.

Definition 2.19 (Universal lower semicomputable discrete semimeasure). Let us

denote

m(x1, . . . , xm|a1, . . . , an) := 2−K(x1,...,xm|a1,...,an),

for all x1, . . . , xm ∈ {0, 1}∗, a1, . . . , an ∈ {0, 1}∗ ∪ {0, 1}∞.

We write m(x) := m(x|ε), for any x. We call m universal lower semicomputable

discrete semimeasure, or universal measure.

Remark 2.20. Obviously, we now have an even more general version of a discrete

semimeasure, namely one with a conditional argument. It is important to see that

for any a, again, ∑
x∈{0,1}∗

m(x|a) ≤ 1,

due to the fact that the K(x|a)’s are the codeword lengths of a prefix-free code

(namely the domain of Ua) and Kraft’s inequality.

17

Furthermore we remark, without proof, that m is again multiplicatively, up to a

constant factor, majorizing all lower semicomputable functions f : {0, 1}∗×{0, 1}∗∪
{0, 1}∞ → [0, 1] with

∑
x∈{0,1}∗ f(x, a) ≤ 1 for any a.

For the more general universal measure m we just defined, we have a more general

version of Theorem 2.18, as well.

Theorem 2.21 (Coding theorem). We have

m(x|a)
∗
= 2−K(x|a),

for all x ∈ {0, 1}∗, a ∈ {0, 1}∗ ∪ {0, 1}∞.

2.3 Random sequences and Levin’s tests

In this section we want to discuss the concept of a random sequence on the one

hand, and tests as Levin defines them on the other hand. We will need a special

kind of random sequence in the forbidden information theorem 4.1 and for the

justification of the forbidden information thesis 4.14.

In many cases, (randomness) tests are used solely to define random sequences, but

not in this work - we define random sequences using Kolmogorov complexity. We

introduce the concept of a test mainly as a means to express the independence

conservation inequalities in Chapter 3. The tests we will define are due to Levin

and differ form the well-known randomness tests which are due to Martin-Löf.

However, both kinds of tests are similar and, for the sake of a better understanding,

we will use Martin-Löf tests to establish a link between tests and random sequences.

We will define tests for both, infinite and finite sequences.

2.3.1 Random sequences

Given a large amount of data, it seems natural to regard this data as random, if

we can not recognize any law behind it. Considering a very long but finite binary

18

sequence, we may rephrase this as follows: The particular sequence is random,

if its shortest description is not essentially shorter than the sequence itself (i.e.,

we basically have to take the sequence itself as its shortest description). Using

Kolmogorov complexity, we can express this by K(x) ≈ `(x), if we denote our

random sequence by x.

We may consider an infinite sequence as random, if all initial segments are random.

Based on these considerations, we make the following definition.

Definition 2.22 (Martin-Löf random sequence). A sequence α ∈ {0, 1}∞ is called

Martin-Löf random, if supn∈N n−K(α�n) <∞.

2.3.2 Tests for infinite sequences

Martin-Löf gave the following definition for randomness tests. The idea behind

this definition is, that a random sequence should satisfiy all effective laws of proba-

bility one (which correspond to randomness tests), such as the famous law of large

numbers. Note that λ denotes the uniform distribution on {0, 1}∞.

Definition 2.23 (Martin-Löf test of randomness). A Martin-Löf test (of random-

ness) is a computably enumerable set U ⊂ N×{0, 1}∗ such that, with Un := {x ∈
{0, 1}∗ : (n, x) ∈ U}, the condition λ(JUnK) ≤ 2−n is satisfied for all n ∈ N. (We

may identify the sequence (Un)n∈N with the test U .)

We say a sequence α ∈ {0, 1}∞ passes such a test, if α /∈
⋂
n∈NJUnK.

Just for the sake of a better understanding we present the following link to Defi-

nition 2.22.

Theorem 2.24. A sequence α ∈ {0, 1}∞ is Martin-Löf random if and only if α

passes all Martin-Löf tests.

We continue with introducing Levin’s terminology. He works with a definition of

tests (see his 1974 paper [Lev74]) that differs form the one by Martin-Löf in three

aspects: First, we generalize to arbitrary computable measures. Second, we focus

19

on the maximum index n of the sets Un in which a sequence is contained. And

third and most important, we do not implicitly require effectiveness.

Definition 2.25 (Test). Let P be a computable probability measure on {0, 1}∞.

A function d : {0, 1}∞ → N∪{∞} is a P -test if

(i) d(α) = max{m : α ∈ JxK and (m,x) ∈ U}, for some U ⊂ N×{0, 1}∗;

(ii) P ({a ∈ {0, 1}∞ : d(a) ≥ m}) ≤ 2−m, for all m ≥ 0.

Now, mainly for the sake of completeness, we want to quote a different definition

of tests that Levin gives in his newer works (e.g. [Lev10]).

Definition 2.26 (Integral test). Let P be a recursive probability measure on

{0, 1}∞. A function d : {0, 1}∞ → R is an integral P -test, if it satisfies the

condition ∫
{0,1}∞

2d(α)P (dα) ≤ 1.

It should be mentioned, that every integral P -test is a P -test (in the sense of

Definition 2.25). However, the converse does not hold true. We refer to Gacs [Gac]

for further information on this topic. It seems that the independence conservation

inequalities (Chapter 3) can be expressed using these tests, too, but we will stick

to Definition 2.25.

2.3.3 Tests for finite sequences

The idea of tests for strings is similar to the one for infinite sequences. We will

use such “finite” tests to express the independence conservation inequalities for

strings in Section 3.1.2. The following notion of a sum test is a discrete analogon

to the integral test (Definition 2.26). Note again, that in the present work we do

not define tests as implicitly effective.

20

Definition 2.27 (Sum test). Let P be a computable probability measure on

{0, 1}∗. A function d : {0, 1}∞ → R is a sum P -test if it satisfies the condition∑
x∈{0,1}∗

2d(x)P (x) ≤ 1.

2.4 Church-Turing thesis and Gödel incompleteness

In this Section we basically want to discuss two issues. First, we introduce the

Church-Turing thesis. Levin’s independence postulate (Thesis 3.26) should be seen

in analogy hereto; and the forbidden information thesis 4.14, which is more or less

the central thesis of the present work, is an extension of Gödel’s incompleteness

theorem combined with the Church-Turing thesis. Second, we establish a tight

link between consistent completions of Peano arithmetic and total extensions of

the universal partial computable predicate. We use this link to present a reformu-

lation of Gödel’s incompleteness theorem; and to apply the forbidden information

theorem 4.1 (which itself only makes an assertion with respect to total extensions

of universal partial computable predicates) to completions of Peano arithmetic in

Chapter 4.

At the end of this section, we will briefly introduce the notion of definability and

the halting probability, which we will need in Chapter 4.

2.4.1 The Church-Turing thesis

Have in mind the definition of a computable function as a function computable by

a Turing machine. The following thesis establishes a bridge between the informal

concept “effective calculability” and the formal concept “computable function”.8

8The notion of a Turing machine comprises two sides: the actual, “real-world” machine that
we (may) imagine when we work with this notion and the formal machine that consists of
the tape alphabet, transition function and so on. So the concept of the Turing machine itself
already gives strong support for the Church-Turing thesis.

21

Thesis 2.28 (Church-Turing thesis). Every effectively calculable function is a

computable function.

Note that we consider the converse direction, i.e. that every computable function

is effectively calculable, as implicit in the notion of “effective calculability”.

Let us say a few words regarding the thesis. Obviously, since “effective calculabil-

ity” is an informal expression, it needs an interpretation, and different interpreta-

tions are possible. The most important ones (pointed out by Gandy in his paper

“Church’s Thesis and Principles for Mechanisms” [Gan80], among others) are the

following three.

(i) We consider a function as effectively calculable, if it is calculable by an ab-

stract human being, using some mechanical aids.

(ii) We consider a function as effectively calculable, if it is calculable by a me-

chanical device.

(iii) We consider a function as effectively calculable, if it is calculable by any

physically realizable device.

While Church and Turing essentially had interpretation (i) in mind9, Gandy worked

with interpretation (ii). Though Levin’s independence postulate (Thesis 3.26) dif-

fers from the Church-Turing thesis, we will see that it is an assertion as least as

“radical” as interpretation (iii) for the Church-Turing thesis.

2.4.2 Gödel’s incompleteness theorem and the universal partial

computable predicate

In this section, we restrict to first-order logic and the language of the natural

numbers.

9See Gandy [Gan80], p. 1

22

One basic question in mathematical logic is, given some axiomatic system (i.e. a

set of sentences): is it possible to find a consistent, complete extension of it? As al-

ready mentioned in the introduction, particularly this question was discussed with

respect to the Peano axioms (for their precise definition, see Odifreddi [Odi92]).

We denote their deductive closure, Peano arithmetic, by PA. By Lindenbaum’s

lemma, if PA is consistent (which we assume10), then there exists such an ex-

tension.11 Still, Lindenbaum’s lemma does not give us an effectively constructible

extension, so the question remains open, whether such a constructible extension

exists.

If we understand “effectively constructible” as “effectively calculable” - which im-

plies that we only consider deterministic constructions - and accept the Church-

Turing thesis, we can reformulate this question as whether there is a recursively

axiomatizable consistent completion of PA. For this question we get a definite

negative answer by Gödel’s first incompleteness theorem. (Note that we drop the

“first” form now on and only talk of “Gödel’s incompleteness theorem”.)

Have in mind that “recursively axiomatizable” means being the deductive closure

of a recursive set of axioms; and obviously, if a set is recursively axiomatizable, it

is necessarily recursively enumerable.

Theorem 2.29 (Incompleteness theorem). If T is a consistent, recursively enu-

merable extension of PA, then T is incomplete.

Note that we will consider the combination of Gödel’s incompleteness theorem and

the Church-Turing thesis - i.e. that there is no effectively calculable consistent

completion of PA - again in Chapter 4 and refer to it as “Gödel’s thesis”.

Without explicitly mentioning it, we used the fact that based on the well-known

Gödel numbering, we can build a “structure preserving” bijection between N and

10The consistency of PA is proved to be not provable within PA itself by Gödel’s second in-
completness theorem. But within Zermelo-Fraenkel set theory, which we assume, it is in fact
proved.

11The proof of Lindenbaum’s lemma relies on the axiom of choice and is therefore quite uncon-
structive.

23

the sentences in the language of the natural numbers.12 So we can identify sen-

tences with elements of N. Particularly, we can consider PA and any extension of

it as subsets of N.

Now we use this fact to make the following definition.

Definition 2.30 (PA-completeness). A set A ⊂ N is called PA-complete, if one

can compute relative to A a complete, consistent extension of PA.

We can reformulate the incompleteness theorem using PA-complete sets.

Theorem 2.31 (Incompleteness theorem, first reformulation). If a set A is PA-

complete, then it is not computable.

The equivalence of both formulations is immediate by trivial proofs by contra-

diction (note that any computably enumerable and complete theory is already

computable).

Now we go one step further and express the notion of PA-completeness in terms

of partial computable functions.

Definition 2.32. A partial computable function f :⊆ {0, 1}∗ → {0, 1} is called

universal partial computable predicate, if for any other partial computable function

g :⊆ {0, 1}∗ → {0, 1}, there is some string pg, such that

g(x) ∼= f(pg
ax), for all x ∈ {0, 1}∗.

We fix a universal partial computable predicate and denote it by u.

Remark 2.33 (Existence of u). Note that the existence of a universal partial com-

putable predicate is guaranteed by the existence of a universal Turing machine.

Theorem 2.34. Let A ⊂ N. The following are equivalent:

(i) A is PA-complete.

(ii) A computes a total extension of u.

12By “structure preserving” we mean that from an n ∈ N, we can exactly reconstruct the sentence
it corrseponds to.

24

Theorem 2.34 is used by Levin [Lev10] and Stephan [Ste06], among others. How-

ever, we could not find a proof for it in the literature. The proof we now present

for this theorem makes use of some results and proof ideas that we found in the

monographs by Odifreddi [Odi92] and Downey and Hirschfeldt [DH10].

We will need the following lemma.

Lemma 2.35. Let S be a set of sentences and ϕ be a sentence. Then S ∪ {¬ϕ}
is inconsistent, if and only if S ` ϕ.

Proof of Theorem 2.34. (i) ⇒ (ii): Let T be a consistent, complete extension of

PA that is computable in A.

Since any partial computable function is representable in Peano arithmetic (for

details see Odifreddi [Odi92]), there is a formula ϕ(x) such that

u(n)↓ = 1⇔ PA ` ϕ(ñ),

u(n)↓ = 0⇔ PA ` ¬ϕ(ñ),

where ñ denotes the numeral that represents n within the formal language of the

natural numbers, i.e. is the n-th successor of the constant symbol 0, for all n ∈ N.

We define for all n ∈ N

û(n) :=

1, if ϕ(ñ) ∈ T,

0, if ¬ϕ(ñ) ∈ T.

Thus defined, û is an A-computable total extension of u.

(ii) ⇒ (i): Now let A be a set computing a total extension û of u. We define a

partial computable predicate P by P := ϕM for the (partial) machine M that is

constructed as follows. Remember that we identified N with the set of all sentences.

On input 〈m,n〉, M runs through all possible proofs and for each checks, if it

proofs either n or ¬n from PA∪{m}, or none. When a proof for n is found (before

25

one for ¬n), M stops and outputs 1; when a proof for ¬n is found (before one for

n), M stops and outputs 0.

Since P is partial computable, there is some string p, such that Q(·) :∼= û(pa·) is

a total extension of P .

Now we use this fact to define a set of sentences T , which is a complete, consistent

extension of PA, computable in A. We do this by inductively and effectively

defining finite sets T0 ⊂ T1 ⊂ . . . that are consistent with PA, and setting T :=⋃
n∈N Tn - which is then, due to the compactness theorem, consistent with PA as

well.

n = 0: We set T0 := ∅.

ny n+ 1: Suppose we have defined the finite set Tn, that is consistent with PA.

Let m :=
∧
k∈Tn k.

If Q(〈m,n〉) = 1, then P (〈m,n〉) � 0. So either PA∪{m} ` n or P (〈m,n〉)↑. In

the first case, since PA∪{m} is consistent, we know that PA∪{m} 0 ¬n. But in

the latter case, by the construction of P , we have PA∪{m} 0 ¬n as well. Hence,

by setting Tn+1 := Tn∪{n} we have Tn+1 being consistent with PA (due to Lemma

2.35).

Otherwise, if Q(〈m,n〉) = 0, then either PA∪{m} ` ¬n or P (〈m,n〉)↑. By a

similar argument as above, in both cases this means PA∪{m} 0 n. Setting Tn+1 :=

Tn ∪ {n} we have Tn+1 being consistent with PA (due to Lemma 2.35 again). y

So by construction, T is a complete, consistent extension of PA, computable in A.

Note that we immediately get another reformulation of the incompleteness theo-

rem.

Theorem 2.36 (Incompleteness theorem, second reformulation). If û is a total

extension of u, then û is not computable.

26

The equivalence of this second reformulation and the first one (Theorem 2.31) is

immediate by Theorem 2.34 and trivial proofs by contradiction.

2.4.3 Definability

There is one other subject from the field of mathematical logic that we want to

treat now, namely definability of a set. We need to define definability in order to

state the independence postulate (Thesis 3.26) later on. Note that for a structure

M , we denote its domain by dom(M).

Definition 2.37 (Definable set). Let L be a first-order language, M be an L-

structure. A set A ⊂ dom(M) is called definable in M , if there exists an L-formula

ψ(x), such that

A = {a ∈ dom(M) : M |= ψ(a)}.

There is a sequence definable in N, i.e. the intended structure for the natural

numbers, that is moreover a Martin-Löf random, left-c.e. real. It will be important

for us in Chapter 4. Keep in mind that U denotes our universal prefix-free Turing

machine.

Definition 2.38 (Halting probability). The halting probability Ω is defined by

Ω :=
∑

p∈dom(U)

2−p.

For further details on this matter, we refer to Downey and Hirschfeldt [DH10], and

Li and Vitanyi [LV08].

27

3 Mutual information

The concept of mutual information is the central instrument we will use to express

and justify the forbidden information theorem 4.1 and the forbidden information

thesis 4.14 in Chapter 4.

Interestingly, when Kolmogorov for the first time explicitly wrote about Kolo-

mogorov complexity in his paper “Three approaches to the quantitative definition

of information” [Kol68], he used Kolmogorov complexity mainly as a means to de-

fine mutual information. He considers the concept of “information conveyed by an

object x about an object y” more fruitful than just “the information in an object

x”.1

How did Kolmogorov formalize the notion of mutual information? For finite se-

quences, his basic idea is to indirectly define mutual information using an algebraic

expression: the quantity of information contained in a sequence x equals the quan-

tity of information in x that is conveyed by y (i.e. their mutual information) plus

the quantity of information in x, that is not conveyed by y. By letting I(x : y)

denote the mutual information of x and y, we may preliminarily(!) formalize this

as

K(x) = I(x : y) + K(x|y),

or equivalently

I(x : y) = K(x)−K(x|y).

1The main reason he gives for this opinion is based upon a recourse to probabilistic information
theory, where the entropy of a single continuous random variable X is often infinite but the
mutual information with another random variable Y is finite and thus examinable. For futher
information on probabilistic information theory we refer to MacKay [Mac03].

28

Observe that Kolmogorov made this definition2 of mutual information in analogy

to the one in probabilistic information theory, where we have

I(X : Y) = H(X)−H(X|Y)

for two random variables X, Y , with H denoting the (conditional) entropy.3 (For

futher information on this topic we refer to MacKay [Mac03].)

For several reasons, we will base our considerations on a definition of mutual

information that slightly differs from the one given by Kolmogorov. However,

Kolmogorov’s definition is still widely used (parallely to the one we will consider)

and gives a good intuition for the underlying idea of mutual information, so one

should keep it in mind.

In this work we will discuss mutual information for both, finite and infinite se-

quences. The definition we use for strings is widely accepted. However, the defi-

nition we use for infinite sequences is due to Levin and almost exclusively used by

him. Besides the definitions and some basic properties of mutual information, in

this chapter the focus is on the independence conservation inequalities, which are

due to Levin. They are central for the justification of the independence postulate,

which we will present at the end of this chapter.

All definitions, theorems and proofs of the first two sections of this chapter are

taken from the monographs by Downey and Hirschfeldt [DH10] and Li and Vitanyi

[LV08], the lecture notes by Gacs [Gac] and Levin’s papers [Lev74, Lev80, Lev84,

Lev10]. Except for Theorem 3.17, Lemma 3.25, their proofs and some simple

properties of mutual information, which are based on personal communication

with Levin and own considerations.

2It should be mentioned that Kolmogorov actually used plain Kolmogorov complexity in his
definition.

3Note that this expression is used for “infinite”, i.e. continuous random variables, too.

29

3.1 Mutual information for finite sequences

We start with definitions and basic properties and afterwards show the indepen-

dence consveration inequalities for finite sequences.

3.1.1 Definition and basic properties

As already mentioned, we define mutual information different for this work than

in the introduction above. However, Theorem 3.2 will show that in fact both

definitions are very similar.

Definition 3.1 (Mutual information for strings). For x, y ∈ {0, 1}∗, their mutual

information I(x, y) is defined as

I(x, y) := K(x) + K(y)−K(x, y).

This definition seems intuitive as well: the difference of the information needed to

describe strings x and y separately on the one hand and jointly on the other hand

can be considered as their mutual information.

The main reason why we do not take the preliminary definiton of mutual informa-

tion mentioned in the introduction, i.e. K(x)−K(x|y), is, that this expression is

not symmetric in the arguments x, y, as was shown by Zvonkin and Levin [ZL70].

Moreover, the independence conservation inequalties do not hold true for that ex-

pression (as Levin mentions without proof in “Forbidden Information”[Lev10]).

Theorem 3.2. For all x, y ∈ {0, 1}∗, we have

I(x, y)
+
= K(x)−K(x|y∗)
+
= K(y)−K(y|x∗).

This theorem is an immediate consequence of the following lemma.

30

Lemma 3.3 (Symmetry of information). For all x, y ∈ {0, 1}∗ we have

K(x, y)
+
= K(x) + K(y|x∗).

Proof. We first prove that

K(x, y)
+
< K(x) + K(y|x∗).

Let z be a minimal length description of y given x∗. Then we can construct a prefix-

free machine M that, on input x∗z, first computes x from x∗, then computes y

from x∗ and z, and finally outputs 〈x, y〉.

In order to prove the reverse inequality, we prove that

K(y|x∗)
+
< K(x, y)−K(x),

using the KC theorem 2.14.

Let z1, z2, . . . be a recursive enumeration of dom(U) and let xi, yi be such that

U(zi) = 〈xi, yi〉, for all i. Let Wx := {i : xi = x}.

Given n and x, we build a KC set by enumerating requests (l(zi)−n, yi) for i ∈ Wx,

as long as the weight of these requests does not exceed 1. Call the resulting prefix-

free machine Mn,x.

With Q being the “output probability” with respect to U, as we defined it in

Remark 2.17, there are constants c and c′ such that

2K(x)−c
∑

y∈{0,1}∗
Q(〈x, y〉) ≤ 2K(x)−c′Q(x) ≤ 1.

The second inequality is due to the coding theorem 2.21. For the first inequality let

us consider the Turing machine V , that outputs x, whenever U outputs 〈x, y〉 for

some y. Since x 7→ QV (x) :=
∑

p:V (p)=x 2− `(p) is a lower semicomputable discrete

31

semimeasure, we have

Q(x)
∗
> QV (x) =

∑
p:V (p)=x

2− `(p) =
∑

y∈{0,1}∗
Q(〈x, y〉),

by the coding theorem 2.21.

Since ∑
i∈Wx

2−(l(zi)−l(x
∗)+c) = 2K(x)−c

∑
y∈{0,1}∗

∑
z:U(z)=〈x,y〉

2−l(z)

= 2K(x)−c
∑

y∈{0,1}∗
Q(〈x, y〉)

≤ 1,

all relevant requests will be enumerated by the Turing machine MK(x)−c,x.

Now we define the the oracle prefix-free machine M as follows. With w on the

oracle tape, M first computes x = U(w) and then simulates Ml(w)−c,x.

If M has x∗ on its oracle tape, then it will simulate MK(x)−c,x. Since there is an

i ∈ Wx such that zi = 〈x, y〉∗, the KC set defining MK(x)−c,x has as one of its

requests (K(x, y)−K(x) + c, y), thus

K(y|x∗)
+
< KM(y|x∗) ≤ K(x, y)−K(x) + c.

In some cases we will need the following “conditional” version of mutual infor-

mation, which may be seen in analogy to the conditional version of Kolmogorov

complexity.

Definition 3.4. For x, y, z ∈ {0, 1}∗ the mutual information I(x, y|z) of x, y rel-

ative to z is defined as

I(x, y|z) := K(x|z) + K(y|z)−K(x, y|z).

32

Again, we can reformulate this definition as follows.

Theorem 3.5. For all x, y, z ∈ {0, 1}∗, we have

I(x, y|z)
+
= K(x|z)−K(x|y,K(y|z), z)

+
= K(y|z)−K(y|x,K(x|z), z).

This theorem is an immediate consequence of the following lemma, that can be

proved similarly to Lemma 3.3.

Lemma 3.6 (Symmetry of information, conditional version). We have for all

x, y, z ∈ {0, 1}∗

K(x, y|z)
+
= K(x|z) + K(y|x,K(x|z), z),

where the additive constant implicit in “
+
=” does not depend on x, y, z.

We proceed with stating some basic properties of mutual information.

Theorem 3.7. The mutual information I has the following properties:

(i) I(x : y)
+
> 0, for all x, y ∈ {0, 1}∗.

(ii) I is symmetric, i. e. I(x : y) = I(y : x), for all x, y ∈ {0, 1}∗.

(iii) I(x : y)
+
< min{K(x),K(y)}, for all x, y ∈ {0, 1}∗.

(iv) I(x : x) = K(x), for all x ∈ {0, 1}∗.

(v) 〈x, y〉 7→ I(x : y) is not lower semicomputable.

Proof. (i): This follows from the fact that K(x)
+
> K(x|y∗).

(ii): This is obvious.

(iii): As K(y)
+
< K(x, y), we have I(x : y)

+
< K(x) + K(y)−K(y).

(iv): This equality is due to the fact that K(x)
+
= K(x, x)

(v): If I was lower semicomputable, then x 7→ K(x)
+
= I(x : x) would be lower

semicomputable and thus computable.

33

Intuitively, I(〈x, y〉 : z) should be greater than or equal to I(x : z). The following

theorem implies that mutual information is in fact monotonic (which we state as

a corollary).

Theorem 3.8. For all x, y, z ∈ {0, 1}∗ we have

I(〈x, y〉 : z)
+
= I(z : x) + I(z : y|x∗).

Proof. We have

I(z : 〈x, y〉)− I(z : x)
+
= K(z) + K(x, y)−K(z, x, y)−K(z)−K(x) + K(z, x)

+
= K(x, y)−K(x) + K(z, x)−K(z, x, y)

+
= K(y|x∗) + K(z|x∗) + K(x)−K(z, x, y)

+
= K(y|x∗) + K(z|x∗)−K(y, z|x∗)
+
= I(y : z|x∗),

where the third and fourth equalities are due to Theorem 3.3.

Corollary 3.9. The mutual information I is monotonic, i.e. for all x, y, z ∈
{0, 1}∗ we have

I(x : 〈y, z〉)
+
> I(x : y).

3.1.2 Independence conservation inequalities

When Levin called the inequalities in Theorem 3.10 and 3.13 below “independence

conservation inequalities”4 he probably had in mind the famous laws from physics,

such as the energy conservation law or the second law of thermodynamics which

states that the entropy within a closed system can only increase.5 The essence

of the independence conservation inequalities is, that the information a string x

4The inequalties are called “independence conservation inequalities” in “Forbidden Informa-
tion”. In earlier papers Levin calls them “information conservation inequalities” [Lev74] or
“randomness conservation inequalities” [Lev84].

5The second law of thermodynamics is not called a conservation law though.

34

conveys about a string y can not substantially be increased, neither by determin-

istic nor by randomized algorithmic processing of x. To state this differently, the

independence of x and y is conserved, it cannot decrease. Note that we have

not formally defined the term “independence”, but we can roughly say that the

independence of two strings increases when their mutual information decreases.

The first independence conservation inequality, which is about increase of mutual

information by deterministic algorithms, is pretty obvious.

Theorem 3.10 (First independence conservation inequality for strings: mutual

information non-increase by algorithms). Let f : {0, 1}∗ → {0, 1}∗ be a computable

function. Then there is a constant cf such that for all x, y ∈ {0, 1}∗ we have

I(f(x) : y) ≤ I(x : y) + cf .

Proof. We have

I(x : y) = K(x) + K(y)−K(x, y)
+
= I(〈x, f(x)〉 : y),

since from a description of x, we also get 〈x, f(x)〉 (by transforming U into a

new machine that outputs 〈U(w), f(U(w))〉 on input w), and vice versa (by a

similar machine), so K(x)
+
= K(x, f(x)). And with a similar argument K(x, y)

+
=

K(x, f(x), y). The additive error terms reflect the Turing machines we constructed

from U, which include an encoding of f .

But then by the monotonicity of I we get

I(f(x) : y)
+
< I(〈x, f(x)〉 : y)

+
= I(x : y),

or, if we explicitly denote the sum of the additive constants implicit in “
+
=” and

“
+
<” by cf ,

I(f(x) : y) ≤ I(x : y) + cf .

35

We turn to the second independence conservation inequality now, which concerns

processing of information by randomized algorithms. Let us first prove the fol-

lowing lemmas, where the second one already contains the essence of the second

conservation inequality.

Lemma 3.11. For all x, y, z ∈ {0, 1}∗ we have

K(x|y∗)
+
< K(x, z|y∗)

+
< K(x|z∗) + K(z|y∗).

Proof. Using the monotony of K and Lemma 3.3 several times, we obtain

K(x|y∗)
+
< K(x, z|y∗)
+
= K(x, y, z)−K(y)

+
= K(x, y|z∗) + K(z)−K(y)

+
< K(x|z∗) + K(y|z∗) + K(z)−K(y)

+
= K(y, z) + K(x|z∗)−K(y)

+
= K(z|y∗) + K(x|z∗).

Lemma 3.12. For all x, y, z ∈ {0, 1}∗ we have

m(z|x∗) · 2I(z:y)−I(x:y) ∗< m(z|x∗, y,K(y|x∗)),

where the multiplicative constant implicit in “
∗
<” does not depend on x, y, z.

Proof. We have

I(z : y)− I(x : y) = K(y)−K(y|z∗)− (K(y)−K(y|x∗))

= K(y|x∗)−K(y|z∗).

36

Hence

− log
(
m(z|x∗) · 2I(z:y)−I(x:y)) = K(z|x∗) + K(y|z∗)−K(y|x∗)

+
> K(y, z|x∗)−K(y|x∗) (Theorem 3.11)

+
= K(z|x∗, y,K(y|x∗)). (Theorem 3.6)

Now we are ready to state the second independence conservation inequality for

strings.

Theorem 3.13 (Second independence conservation inequality for strings: mutual

information non-increase by randomized algorithms). Let (Px)x∈N be a family of

uniformly lower semicomputable discrete measures. Then for all x, y ∈ {0, 1}∗ we

have

I(〈x, z〉 : y)
+
< I(x : y) + dx,y(z), for all z ∈ {0, 1}∗,

where dx,y is some sum P -test.

Proof. We simply show that

d̃x,y(z) := I(〈x, z〉 : y)− I(x : y)

is a sum Px-test (as defined in 2.27) up to an additive constant. We have

Px(z)
∗
< m(z|x)

∗
< m(z|x∗)

∗
< m(x, z|x∗),

for all x, z, by Remark 2.20, where the multiplicative constant implicit in the first

37

“
∗
<” depends on P of course. Hence∑

z∈{0,1}∗
Px(z) · 2d̃x,y

∗
<

∑
z∈{0,1}∗

m(x, z|x∗) · 2I(〈x,z〉:y)−I(x:y)

≤
∑

z,w∈{0,1}∗
m(w, z|x∗) · 2I(〈w,z〉:y)−I(x:y)

≤
∑

z,w∈{0,1}∗
m(w, z|x∗, y,K(y|x∗)) (Lemma 3.12)

∗
< 1.

We get a proper Px-test dx,y that fulfills the claimed inequality by subtracting from

d̃x,y the necessary constant.

For an easier interpretation let us restate the theorem as follows. This version

follows even more immediately from Theorem 3.12.

Corollary 3.14. Let (Px)x∈N be a family of uniformly lower semicomputable dis-

crete measures. Then for all x, y ∈ {0, 1}∗ we have∑
z∈{0,1}∗

Px(z) · 2I(z:y)−I(x:y) ≤ cP ,

for some constant cP .

Have in mind the discussion of randomized algorithms in Section 2.1.4. To each

randomized algorithm, we have associated the computable discrete distribution

Px(y) for the algorithm to output string y on input x. We apply the above corollary

and obtain the following result.

Corollary 3.15. The probability for a randomized algorithm to compute a string

z with I(z : y)− I(x : y) ≥ m on input x, is less than or equal to 2−m, for any y,

up to a multiplicative constant depending on the algorithm.

38

3.2 Mutual information for infinite sequences

The concept of mutual information for infinite sequences is a pretty interesting

subject, some nice applications can be found in Levin’s 1984 paper [Lev84]. The

important assertion we will make in Chapter 4, that, under the assumption of

the independence postulate, a completion of Peano arithmetic is unrealistic, is

another notable application. However, as already mentioned, there is no consensus

on a precise definition of mutual information for infinite sequences. Levin alone

mentions four varying definitions in three papers [Lev74, Lev80, Lev84].

We will base our considerations on the main definition that Levin proposes in his

1974 paper, although some counterintuitive properties of this definition have been

proven recently (see Remark 3.20 below). Similar to the case of finite sequences,

we will state two independence conservation inequalities.

3.2.1 Definition and basic properties

The definition of mutual information for infinite sequences is based on the universal

discrete semimeasure m and the definition of mutual information for strings. Note

that it includes infinite and finite sequences, we will show soon, that it is a proper

generalization of the definition we gave in the previous section.

Definition 3.16 (Mutual information for infinite sequences). For a, b ∈ {0, 1}∗ ∪
{0, 1}∞, their mutual information Î(a : b) is defined as

Î(a : b) := log
∑

x,y∈{0,1}∗
m(x|a) ·m(y|b) · 2I(x:y).

If we neglect, that we switch between the linear and the logaritmic scale within the

definition, we may think of this definition as follows: We calculate the weighted

average of mutual information for all pairs of strings, where for each pair (x, y) the

weight we give its mutual information is the “probability” that x is computed by

a, and y is computed by b, respectively. Note that, since m(x|a) = 2−K(x|a), the

39

“probability” m(x|a) is great, if K(x|a) is small, i.e. if a contains much information

about x.

It may also help to imagine (keeping Kolmogorovs definition from the introduction

of this chapter in mind) that if

[K(x)−K(x|a)] + [K(y)−K(y|b)]−K(x, y)� 0,

i.e. if the information, that a conveys about x plus the information, that b conveys

about y is greater than the information contained in x and y together - then the

information in a (about x) and the information in b (about y) necessarily have to

“overlap”.

We proceed with showing some basic properties of mutual information for infinite

sequences. As already indicated, we have equivalence to the finite version of mutual

information in the case of strings.

Theorem 3.17 (Equivalence in the finite case). For all u, v ∈ {0, 1}∗ the two

versions of mutual information coincide, i.e.

I(u : v)
+
= Î(u : v).

Proof. We have to show that

2I(u:v) ∗=
∑

x,y∈{0,1}∗
m(x|u) ·m(x|v) · 2I(x:y).

“
∗
<”: This inequality is immediate, since the terms on the right-hand side are all

positive and for x = u and y = v, the left-hand side appears in the summation.

“
∗
>”: To prove this inequality, we simply need to apply Corollary 3.14 twice (note

that m(x|y)
∗
< m(x|y∗), for any x, y, as x∗ 7→ x is computable by a prefix-free

40

Turing machine):∑
x,y∈{0,1}∗

m(x|u) ·m(y|v) · 2I(x:y)

=
∑

x∈{0,1}∗
m(x|u) · 2I(x:v)

 ∑
y∈{0,1}∗

m(y|v) · 2I(x:y)−I(x:v)


∗
<

∑
x∈{0,1}∗

m(x|u) · 2I(x:v)−I(u:v) · 2I(u:v)

∗
< 2I(u:v).

Note that the multiplicative constant that is mentioned in Corollary 3.14 in the

case at hand only depends on m.

By a similar proof as for Theorem 3.17 we obtain the following result.

Corollary 3.18. For all α ∈ {0, 1}∞, x ∈ {0, 1}∗, we have

Î(α : x)
+
= log

∑
w∈{0,1}∗

m(w|α)2I(w:x).

We proceed with listing some further properties of Î.

Theorem 3.19. The mutual information Î has the following properties:

(i) Î(α : x)
+
< K(x), for all α ∈ {0, 1}∞, x ∈ {0, 1}∗.

(ii) If α ∈ {0, 1}∞ is computable, then there is some constant cα, such that

Î(α : x)
+
< cα, for all x ∈ {0, 1}∗.

(iii) Let α ∈ {0, 1}∞, such that there is some constant c, so that K(α�n) ≥
2 K(n)− c, for all n (e.g. α is Martin-Löf random). Then Î(α : α) =∞.

(iv) Î is monotonic, i.e. Î(α : b)
+
< Î(〈α, γ〉 : b), for all α, γ ∈ {0, 1}∞, b ∈ {0, 1}∗.

41

(v) Let α, β ∈ {0, 1}∞, such that α is Martin-Löf random and computable in β.

Then Î(α : β) =∞.

Proof. (i): We have

2Î(α:x) ∗=
∑

w∈{0,1}∗
m(w|α)2I(w:x) (Corollary 3.18)

∗
< 2K(x)

∑
w∈{0,1}∗

m(w|α) (Theorem 3.7)

≤ 2K(x).

(ii): As α is computable, there is a constant cα, such that m(x|α) ≤ cα m(x|ε),
for all x. Hence

2Î(α:x) ∗=
∑

w∈{0,1}∗
m(w|α)2I(x:w) (Corollary 3.18)

∗
< cα

∑
w∈{0,1}∗

m(w|ε)2I(x:w)−I(x:ε) (Theorem 3.7, part (iii))

∗
< cα. (Corollary 3.14)

(iii): We have

2Î(α:α) ∗>
∑
n∈N

m(α�n|α) m(α�n|α)2I(α�n:α�n)

∗
>
∑
n∈N

2−2K(n)+K(α�n)

∗
>
∑
n∈N

2−c

=∞,

where the second inequality holds true due to Theorem 3.7 and the fact that

K(α�n|α)
+
< K(n), for all n.

(iv): The monotonicity follows immediately from the definition.

42

(v): Obviously, Î(α : α) ≤ Î(α : β) + c, for some constant c (for a formal proof,

see Theorem 3.21 below). Then apply (iii).

Remark 3.20. We end this section by mentioning some problematic aspect about Î

that was found by Hirschfeldt and Weber [HW12]. As usual, we call a sequence α

K-trivial, if K(α�n) ≤ K(n)+c, for all n and a constant c that does not depend on

n. Furthermore, we say a sequence α has finite self-information, if I(α : α) <∞,

for whatever version of mutual information I we take.

It was proposed, also by Levin, that with an intuitive definition of mutual infor-

mation I for infinite sequences, a sequence α should have finite self-information if

and only if α is K-trivial, i.e. for both notions the classes of the least complex se-

quences should coincide. But considering I = Î, though K-triviality implies finite

self-information, finite self-information does not imply K-triviality, as was shown

by Hirschfeldt and Weber. This may be seen as an argument, that our version Î

of mutual information has some deficiencies.

3.2.2 Independence conservation inequalities

The two independence conservation inequalities for infinite sequences are simi-

lar to the ones for finite sequences (see Section 3.1.2). The first inequality con-

cerns algorithmic operators. Remember that an algorithmic operator is a func-

tion f : {0, 1}∞ → {0, 1}∞, such that there is an oracle Turing machine M with

f = ΦM .

Theorem 3.21 (First independence conservation inequality for infinite sequences:

mutual information non-growth by algorithmic operators). Let f be an algorithmic

operator. Then there is a constant cf , such that for all α, β ∈ {0, 1}∞ we have

Î(f(α) : β) ≤ Î(α : β) + cf .

The observation is pretty obvious but we give a formal proof anyway.

43

Proof. Let M be an oracle Turing machine that computes f in the above sense.

Let T be the oracle machine that works like the universal prefix-free machine U,

except that, given oracle α, whenever Uα works with the bit α(i), T works with

Mα(i) instead (by simulating M). Then Uf(α)(x) = Tα(x) and hence

K(x|f(α)) = KT (x|α) ≥ K(x|α)− cT ,

for some constant cT (by Theorem 2.9). We define cf := cT and obtain

Î(f(α) : β) = log
∑

x,y∈{0,1}∗
2−K(x|f(α)) ·m(x|β) · 2I(x:y)

≤ Î(α : β) + cf .

Now we turn to the second conservation inequality for infinite sequences. As was

the case with the second conservation inequality for strings, Theorem 3.13, this

probabilistic statement gets particularly interesting when we apply it to random-

ized operators which we introduced in Section 2.1.4: to each finite composition of

randomized operators, we have associated the α-computable probability Pα(JyK)
for the composition of operators to compute a sequence starting with the prefix y,

on input α. The statement shows, that the probability of a substantial increase of

mutual information by a compositions of randomized operators, and thus also by

a single randomized operator, is vanishingly small.

Theorem 3.22 (Second independence conservation inequality for infinite sequences:

mutual information non-growth by randomized operators). Let (Pα)α∈{0,1}∞ be a

family of uniformly α-computable continuous probability measures. Then for all

α, β ∈ {0, 1}∞ we have

Î(〈α, γ〉 : β) ≤ Î(α : β) + dα,β(γ) + cα,β, for all γ ∈ {0, 1}∞,

where dα,β is some sequential Pα-test and cα,β is some constant.

Keeping the notations of the theorem, it immediately follows from the theorem

44

and the definition of tests (Definition 2.25) that

Pα({γ ∈ {0, 1}∞ : Î(〈α, γ〉 : β)− Î(α : β) > m})

≤ Pα({γ ∈ {0, 1}∞ : dα,β(γ) > m− cα,β})

≤ 2−m+cα,β .

So for an easier interpretability of the theorem, we state the following corollaries

Corollary 3.23. Let (Pα)α∈{0,1}∞ be a family of uniformly α-computable continu-

ous probability measures. Then for all α, β ∈ {0, 1}∞ we have

Pα({γ ∈ {0, 1}∞ : Î(〈α, γ〉 : β)− Î(α : β) > m}) ≤ 2−m+cα,β ,

for some constant cα,β.

Corollary 3.24. The probability for a composition of randomized operators to

compute a sequence γ with Î(〈α, γ〉 : β)− Î(α : β) > m on input α, is less than or

equal to 2−m, for any β, up to a multiplicative constant depending on the algorithm

and α, β.

Unfortunately, we are not able to give a proof for Theorem 3.22. In his 1974 paper

[Lev74], where Levin states the theorem, he gives no proof and not even any hint

how to prove it.

We were only able to prove the following lemma based on some standard methods.

We state it since we suppose that the proof idea can be taken as a basis to proof

Theorem 3.22.

Lemma 3.25. Let (Pα)α∈{0,1}∞ be a family of uniformly α-computable continuous

probability measures. Then for all α ∈ {0, 1}∞, x ∈ {0, 1}∗ we have

P ({γ ∈ {0, 1}∞ : K(x|α, γ) ≤ K(x|α)− c}) < 2−c+d,

for all c ∈ N and some constant d.

45

Proof. Let α be arbitrary but fixed. Let Sx be the set of all pairs (g, p) ∈ {0, 1}∗×
{0, 1}∗, such that U〈α,g0...〉(p) has exactly use 2 `(g) or 2 `(g) + 1 on the oracle tape

(i.e. reads g and the corresponding initial segment of α) and outputs x.

We build an oracle machine M that enumerates a KC set in the following way.

Mα internally enumerates Sx for all x = 0, 1, Whenever for the first time, for

some x and c and the finite subset S ′x of Sx enumerated so far,∑
(g,p)∈S′x

2− `(p) · Pα(JgK) ≥ 2−c,

Mα enumerates the KC request 〈c+ 1, x〉.

We have to prove that the requests enumerated by M form in fact a KC set.

Let 〈c0 + 1, x0〉, 〈c1 + 1, x1〉, . . . denote these requests. We have to show that∑
i∈N 2−ci−1 ≤ 1.

Let S denote the set of all pairs (g, p), such that U〈α,g0...〉(p) has exactly use 2 `(g)

or 2 `(g) + 1 on the oracle tape and terminates (i.e. S =
⋃
x∈{0,1}∗ Sx). Then

∑
i∈N

2−ci−1 =
∑

x∈{0,1}∗
2−1

∑
i:xi=x

2−ci

≤
∑

x∈{0,1}∗
2−1

∑
k∈N

2−k
∑

(g,p)∈Sx

2− `(p) · Pα(JgK)

=
∑

(g,p)∈S

2− `(p) · Pα(JgK)

=
∑

(g,p)∈S

Pα ⊗ λ(JgK× JpK)

= Pα ⊗ λ

 ⋃
(g,p)∈S

JgK× JpK

 ≤ 1,

with λ being the uniform distribution on {0, 1}∞. The last equality holds true,

since for all (g, p), (g′, p′) ∈ S, if

JgK× JpK ∩ Jg′K× Jp′K 6= ∅,

46

then g is a prefix of g′ or vice versa; and p is a prefix of p′ or vice versa. But

then g = g′ and p = p′, as otherwise there has to be some point of time, where

U〈α,g0...〉(p) for the first time behaves different from U〈α,g
′0...〉(p′) which yields a

contradiction (since up to that point of time, they read the same inputs).

So Mα enumerates a KC set. By the KC theorem 2.14 there is an oracle machine

M ′ so that by Theorem 2.9 there is a constant d′ such that

K(x|α) ≤ KM ′(x|α) + d′,

for all x. Let d := d′ + 2. Then

P ({γ ∈ {0, 1}∞ : K(x|α, γ) ≤ K(x|α)− c}︸ ︷︷ ︸
=:Tx

) < 2−c+d,

for all x and c.

Assume otherwise; then there is some x and c, such that Pα(Tx) ≥ 2−c+d. Note

that Tx = JT ′xK, with T ′x denoting the set of all g, such that there is a p with

`(p) ≤ K(x|α)−c, and U〈α,g0...〉(p) has exactly use 2 `(g) or 2 `(g)+1 on the oracle

tape and outputs x.

We then have ∑
(g,p)∈Sx

2− `(p) · Pα(JgK) ≥
∑
g∈T ′x

2−K(x|α)+c · Pα(JgK)

≥ 2−K(x|α)+c · P (Tx)

≥ 2−K(x|α)+d.

Therefore, Mα enumerates a KC request 〈K(x|α)− d+ 1, x〉, and hence

K(x|α) ≤ KM ′(x|α) + d− 2

≤ [K(x|α)− d+ 1] + d− 2

= K(x|α)− 1,

47

which is a contradiction.

3.3 The independence postulate

In this section we want to discuss Levin’s independence postulate. It is a non-

mathematical statement which we will need to argue for the non-mathematical

forbidden information thesis 4.14 in Chapter 4. After stating the postulate, we

will first try to justify it using the independence conservation inequalities and

afterwards take a critical point of view.

3.3.1 The postulate

Though being quite interesting, Levin’s independence postulate is a pretty difficult

issue, which can already be seen by the fact, that he formulated four different ver-

sions in the four papers where it plays a role [Lev74, Lev80, Lev84, Lev10]. We will

give an own formulation below. Though it slightly differs from all versions stated

by Levin, it is more or less a logical consequence of all these versions. In partic-

ular, it is a comparatively weak formulation, but nevertheless it is strong enough

for our purposes. For the reason why we do not use the version in “Forbidden

Information”, see Section 3.3.3, point (iv).

Thesis 3.26 (Independence postulate). Let α be an infinite sequence that is de-

finable in N.6 Then for an infinite sequence β that is generated by any locatable

physical process, we have Î(α : β) <∞.

Obviously, the independence postulate is not a mathematical statement, as it uses

the non-mathematical term “infinite sequence that is generated by any locatable

6The reason to specify α this way is mainly, that we need to fix α somehow before considering
empirical sequences. If we left α arbitrary, it could be the result of a locatable physical
process (see [Lev74], p. 208).

48

physical process”. It should be seen in analogy to the Church-Turing thesis 2.28,

which contains the non-mathematical term “effective calculability”.7

3.3.2 An attempt of justification

Now we want to present an argumentation supporting the independence pos-

tulate. It bases on ideas that Levin vaguely indicates in three of his papers

[Lev80, Lev84, Lev10] but is far more elaborate. Although the basic ideas are

rather simple, we give a detailed formulation to make its strengths and weaknesses

better visible. Before beginning with the actual argumentation, let us make the

following observations:

(i) An algorithmic operator f : {0, 1}∞ → {0, 1}∞ can always be regarded as

a randomized operator, too (we can easily construct a randomized operator

(M,Q) that calculates f with probability one). Particularly, we can regard a

composition of both, randomized and algorithmic operators as a composition

of only randomized operators. So by our argumentation in Section 2.1.4,

the probability Pγ(JzK) for a composition of algorithmic and randomized

operators to output a sequence with the initial segment z, on input γ, is

γ-computable.

(ii) In the below argumentation we will have a family of measures (P i
β0
i
)i∈I . Due

to basic measure theory, we can define the product measure R := ⊗i∈IP i
β0
i

on (the product σ-algebra on)
∏

i∈I{0, 1}∞. R is the unique measure that

7It should be mentioned that the independence postulate and the Church-Turing thesis are not
directly comparable in terms of logical implication. The Church-Turing thesis does definitely
not imply the independence postulate, since it only makes assertion with respect to effectively
calculable sequences and not sequences generated by locatable physical processes. Regarding
the reverse direction, we may admittedly say that each effectively calculable sequence may
be generated by some locatable physical process. However, since we restrict to the count-
able language of N, there are only countably many uniquely definable α’s and for each such
α, by the independence conservation inequality, the set of sequences that has infinite mutual
information with α has Lebesgue measure zero. So the set of sequences the independence pos-
tulate rules out to be effectively calculable has measure zero. But the set of non-computable
sequences has measure one.

49

preserves the single measures on “their” spaces and makes events in different

spaces independent.

The basic idea for the argumentation for the independence postulate is that any

physical process can be modeled by a composition of randomized and algorith-

mic operators. And such a composition can produce infinite information about

a previously defined sequence only with probability zero, due to the conservation

inequalities. More formally:

(1) We postulate that there is an index set I, a family of compositions of algo-

rithmic and randomized operators, (Ci)i∈I , and a family of initial sequences,

(β0
i)i∈I , such that the following holds true: For each sequence β generated by

any locatable physical process there is an i ∈ I such that β is the result of Ci

applied to an initial sequence β0
i .

(2) We postulate that for any sequence α that is definable in N, and for all i ∈ I,

we have Î(α : β0
i) <∞.

(3) Furthermore, we postulate that I is countable.

(4) Then the probability P i
β0
i
(JzK) for the composition of operators Ci to output a

sequence with the initial segment z, on input β0
i , is β0

i -computable. Applying

Corollary 3.23 (and using the monotonicity of Î) we obtain

P i
β0
i

(
{β : Î(α : β) > m}

)
≤ 2

−m−Î(α:β0
i)+cβ0

i
,α , for all m ∈ N,

for some constant cβ0
i ,α

, and therefore

P i
β0
i

(
{β : Î(α : β) =∞}

)
= Pβ0

i

(⋂
m∈N

{β : Î(α : β) > m}

)
= 0,

for each i ∈ I.

50

(5) For a fixed i ∈ I, we have for the product measure R

R(Ci outputs β with Î(α : β) =∞, on input β0
i)

= P i
β0
i

(
{β : Î(α : β) =∞}

)
= 0.

Therefore

R(there is an i ∈ I, so that Ci outputs β with I(α : β) =∞, on input β0
i)

≤
∑
i∈I

R(Ci outputs β with Î(α : β) =∞, on input β0
i) = 0.

The latter statement essentially coincides with the independence postulate we

stated above.

3.3.3 A critical discussion

We proceed with taking a critical view on the independence postulate and its

justification. The following points should be mentioned.

(i) With respect to step (1): the postulate would cover the following physical

model of the world. We think of the β’s as states of locatable parts of the

universe. We represent the time evolution of the state of some part i of the

universe as a sequence β0
i , β

1
i , . . . consisting of sequences βki in the state space

{0, 1}∞. Particularly, we have β = β k̂i for some k̂. We assume that each tran-

sition from βki to βk+1
i is either a deterministic or a random transformation,

which we represent by an algorithmic or randomized operator, respectively.

Although this physical model contains important aspects of classical mechan-

ics and even grasps an essential aspects of quantum mechanics, namely the

random character of measuerements, it is rather weak. Continuity seems an

essential constituent of reality. But for our argumentation to work, we have to

limit the growth of information by restricting to discrete evolution and more-

over only considering a finite number of steps. Moreover, there seems to be

51

no proper reason, why the probability distributions of the random transfor-

mations sould necessarily be computable - but we model them by randomized

operators that (by our definition) have computable distributions.

It needs to be mentioned, that the above physical model is not the only

model with respect to which we may interpret the independence postulate.

We could also think of the β’s to be infinite in time. We then imagine

them to be succesively written down by a finite composition of (randomized)

Turing machines. In this case too, our above argumentation in favor of the

independence postulate is applicable.

(ii) Regarding step (2) we can say, that this postulate is made up out of thin air.

We could support it (based on the independence conservation inequalty 3.22)

if we assumed the initial β0
i ’s to be distributed by computable distributions.

But for what reasons should we think that, for example, the initial state of

the universe was “chosen” according to a computable distribution?

(iii) To support the postulate in step (3), we emphazise that we only talk about

sequences β, that are generated by locatable physical processes. With our

current language it seems that we can only refer to a countable number of

entities, if we want to have distinct references for distinct entities. We assume

that if a physical entity is locatable, it has a unique (spatiotemporal) refer-

ence. So there are only countably many locatable physical processes. (This

is the reason why we do not simply talk about arbitrary physical processes.)

(iv) Why did we not take the version of the independence postulate, that Levin

states in his paper “Forbidden Information”? Let us cite this version (see

[Lev10], p. 7):

“Let X be a sequence defined with an n-bit mathematical state-

ment (e.g., in PA or set theory). Suppose a sequence Y can be

located in the physical world with a k-bit instruction set. Then

Î(X : Y) < k + n+ c, for some small absolute constant c.”

We did not take this formulation since it is ambiguous and seems very difficult

to justify. Particularly, it is pretty unclear what is meant by the locatability

52

“with a k-bit instruction set”. If we can chose the instruction set after having

full information about the sequence Y , then we may chose it in a way that the

inequality Î(X : Y) < k+n+ c is fulfilled. However, if we do not completely

know the sequence Y when we chose the instruction set by which we locate it,

then for what reasons should the inequality Î(X : Y) < k+n+ c be fulfilled?

Another point is the following. When we talk about a sequence that is

generated by any locatable physical process, then we have a more or less

well described and graspable entity. We modeled a physical process by a

composition of randomized and algorithmic operators and this way we were

able to apply the independence conservation inequalites. Compared with

this, “a sequence that can be located in the physical world” seems a pretty

vague expression and it is difficult to justify any assertion about it. (In some

sense, any sequence can be located in the physical world, if we assume the

sequence 0101 . . . to be locatable.)

The following should be mentioned, too. It seems that based on the inde-

pendence conservation inequalities, we can only make assertions that have

a somehow probabilistic form. The probabilistic form of our version of the

independence postulate is hidden but gets obvious by the argumentation we

gave for it: it holds with probability one. But it seems that the version of

the independence postulate in “Forbidden Information” cited above has no

probabilistic form at all. Note that Levin in his 1974 paper [Lev74] states one

draft version that has a probabilistic form, and one version that is somehow

probabilistic, too, by having a frequentist form.

To sum up the critical examination, we may say that some of its underlying ideas,

but not the independence postulate as a whole is supportable. Its weak point is

its universal claim. The Church-Turing thesis, having a less universal character,

seems way better justifyable.

53

4 Forbidden information

In this chapter, we want to discuss Levin’s assertions in “Forbidden Information”

[Lev10].1 Particularly, we will proof the forbidden information theorem 4.1 and

use it to argue for the forbidden information thesis 4.14, which concerns consistent

completions of PA. We already outlined the argumentation in the introduction.

Besides, we want to show some consequences, that are not explicitily mentioned

in “Forbidden Information”.

4.1 The forbidden information theorem

The forbidden information theorem 4.1 should be seen against the background of

the independence postulate which we discussed in the previous chapter. The pos-

tulate states that a sequence β that is generated by any locatable physical process

may not have infinite mutual information with a sequence α that is definable in

N. The forbidden information theorem 4.1 will show, that every total extension

U of the universal partial computable predicate u has infinite information with

the halting probability Ω (Definition 2.38), which is definable in N. Hence, if we

accept the independence postulate and take β = U and α = Ω, it is “forbidden”

that any locatable physical process generates a total extension of u.

Let us first clarify some notation for the theorem and its proof. Remember that

u denotes the universal partial computable predicate (Definition 2.32).

1We will not discuss some parts of that papers, such as “Proposition 1” and the tiling example.
They are not relevant for the central argumentation.

54

In the text of the theorem, requiring Un ∈ {0, 1}∗∪{0, 1}∞ to be a total extension

of u on {0, 1}n+d means that Un(m) = u(m), for all m ∈ {0, 1}n+d such that

u(m)↓. However, during the proof, we will identify predicates on {0, 1}k simply

with strings in {0, 1}2k .

We already mentioned above the halting probability Ω. Keep in mind, that Ω is a

Martin-Löf random, left-c.e. real.

4.1.1 The theorem

Theorem 4.1 (Forbidden information theorem2). Let ρ be a Martin-Löf random,

left-c.e. real. For all n ∈ N, let Un ∈ {0, 1}∗ ∪{0, 1}∞ be a total extension of u on

{0, 1}n+d, for some constant d defined in the proof; and ρn := ρ�(n + 2 · blog nc).

Then

I(Un : ρn)
+
> n−K(K(n)|n)− cρ,

for all n ∈ N, and for some constant cρ defined in the proof.

Remark 4.2. The following points should be mentioned with respect to the above

theorem and its proof.

(i) Levin defines ρn as ρ�(n+K(n)) but we were only able to prove the statement

with a length such that n is computable from ρn, and that grows faster than

n+ K(n).

(ii) The constant d seems necessary for a proper proof. Levin drops it, probably

for reasons of convenience.

(iii) Without proof we remark that

K(K(n)|n)
+
< log `(n)

+
< log log n,

for all n ∈ N.

2Levin calls this theorem simply “Theorem 1” in “Forbidden Information”. We entitle it “fo-
bidden information theorem” since it is the main theorem of the paper. And with a proper
name, we are able to easier refer to it. Moreover, in combination with the independence
postulate, it “forbids” the existence of a total extensions of u in reality.

55

4.1.2 The proof

Remark 4.3. The basic steps of the proof are the following. Let n ∈ N.

(Step 1) We show that I has the lower bound

I(Un : ρn)
+
> [K(Qn|n) + K(n)−K(K(n)|n)]−K(Qn|Un)−K(Qn|ρn),

for any string Qn. So it suffices to find a single Qn, such that the latter

expression gets big enough.

(Step 2) Qn being a total extension of a partial computable predicate P on {0, 1}n

via Un is a good candidate: On the one hand, for such a Qn, we have

K(Qn|Un)
+
< K(n).

(Step 3) And on the other hand, we can construct P in a way, that knowing ρn lets

us compress Qn to size K(Qn|ρn)
+
< K(Qn|n)−n (using the fact that an ap-

proximation of ρn necessarily takes longer than some specific approximation

of P).

(Step 4) Plugging the estimations of Step 2 and 3 into the inequality in Step 1,

we obtain the claimed inequality.

Step 1

Lemma 4.4. We have

K(Q)
+
> K(Q|n) + K(n)−K(K(n)|n), (4.1)

for all n ∈ N, and Q ∈ {0, 1}2n.

Proof. Due to Theorem 3.3 we have for all n ∈ N, and Q ∈ {0, 1}2n

K(Q|n∗) + K(n)
+
= K(Q, n)

+
= K(Q).

56

Adding K(n∗|n)
+
= K(K(n)|n), we obtain

K(Q|n∗) + K(n∗|n) + K(n)
+
= K(Q) + K(K(n)|n).

We have K(Q|n)
+
< K(Q|n∗) + K(n∗|n), due to Theorem 2.11, hence

K(Q|n) + K(n)
+
< K(Q) + K(K(n)|n).

We have for all n ∈ N

I(Un : ρn)
+
= log

∑
x,y∈N

m(x|Un) ·m(y|ρn) · 2I(x:y)

+
> K(Qn)−K(Qn|Un)−K(Qn|ρn)

+
> [K(Qn|n) + K(n)−K(K(n)|n)]−K(Qn|Un)−K(Qn|ρn),

by taking Qn for x and y and due to the above lemma.

Step 2

We define a partial computable predicate P : {0, 1}∗ → {0, 1}. For this purpose

we construct the following Turing machine M , and set P := ϕM .

For n ∈ N, we define M inductively for inputs 0n, 0n−11, . . . , 1n:

x = 0n: M simultaneously enumerates lower bounds of

m0n,i :=
∑

Q∈{0,1}2n
m(Q|n),

for i = 0, 1. Let i0 ∈ {0, 1} such that the lower bound of m0n,i0 first exceeds 2−n.

M outputs 1− i0.

57

x− 1 y x: M first computes M(0n),M(0n−11), . . . ,M(x− 1). If all computations

converge, let

Q̂x,i :=
{
Q ∈ {0, 1}2n : Q(y) = M(y) for all y ∈ {0n, . . . , x− 1}, and Q(x) = i

}
.

M simultaneously enumerates lower bounds of

mx,i :=
∑

Q∈Q̂x,i

m(Q|n),

for i = 0, 1. Again, let i0 ∈ {0, 1} such that the lower bound of mx,i0 first exceeds

2−n. M outputs 1− i0. y

Similar as in the construction of M , but now with respect to the final M that is

defined for all inputs x ∈ {0, 1}∗ (note that defined here does not mean that M

converges), let

Q̂x,i :=
{
Q ∈ {0, 1}2`(x) : Q(y) = M(y) for all y ∈ {0`(x), . . . , x− 1}

such that M(y)↓, and Q(x) = i
}
,

and

mx,i :=
∑

Q∈Q̂x,i

m(Q|n),

for all x ∈ {0, 1}∗ and i ∈ {0, 1}.

We can make the following observations. Let n ∈ N.

(i) If M(x) diverges for some x ∈ {0, 1}n, then M(y) diverges for all y ∈ {0, 1}n,

with y > x, too.

(ii) For all x ∈ {0, 1}n such that M(x+ 1) converges, we have

mx+1,0 +mx+1,1 < mx,0 +mx,1 − 2−n,

since by construction, M(x) “diagonalizes” against Q’s of total measure at

58

least 2−n. Moreover, since we have

m0n,0 +m0n,1 =
∑

Q∈{0,1}n
m(Q|n) < 1,

there must be some least x ∈ {0, 1}n, so that mx,i < 2−n for both, i = 0 and

i = 1. We denote this least x by xn for the rest of the proof. So M diverges

on xn, . . . , 1
n.

(iii) Particularly,

mxn,0 +mxn,1 < 2 · 2−n. (4.2)

Now we have constructed the partial computable predicate P . Since u is the

universal partial computable predicate, there is some string p ∈ {0, 1}∗, so that

u(pax) ∼= P (x) for all x ∈ {0, 1}∗. Let

d := `(p).

Then given n

Qn(x) := Un(pax), for all x ∈ {0, 1}n,

extends P to a total predicate on {0, 1}n, by assumption. As we can compute Qn

from Un knowing n we have

K(Qn|Un)
+
< K(n). (4.3)

Step 3

For n ∈ N we define

Q̂xn :=
{
Q ∈ {0, 1}2n : Q(y) = P (y) for all y ∈ {0n, . . . , xn − 1}

}
.

So Q̂xn = Q̂xn,0 ∪ Q̂xn,1 and Qn ∈ Q̂xn .

Lemma 4.5. We have

K(Q|xn)
+
< K(Q|n)− n,

59

for all n ∈ N, and Q ∈ Q̂xn.

Proof. Let n ∈ N be arbitrary. Note that from xn we can both, compute Q̂xn ⊂
{0, 1}2n and upper semicompute w 7→ K(w|n) (since n = `(xn)). We use these

facts to build a KC set to prove the above inequality.

The machine M1 with xn on its oracle tape works in the following way. Mxn
1

internally enumerates simultaneously the sets {k : k ≥ K(Q|n)}, for all Q ∈ Q̂xn .

Whenever for some Q, a new upper bound d was enumerated for K(Q|n), then M

outputs a new KC request 〈d− n+ 2, Q〉.

Let (〈di − n+ 2, Q̃i〉)i∈N denote the sequence computed by Mxn
1 . We have∑

i∈N

2−di =
∑

Q∈Q̂xn

∑
i: Q̃i=Q

2−di

≤
∑

Q∈Q̂xn

∑
j∈N

2−(K(Q|n)+j)

≤ 2
∑

Q∈Q̂xn

2−K(Q|n)

< 2−n+2,

due to inequality 4.2. So (〈di − n + 2, Q̃i〉)i∈N is in fact a KC set and we can

apply the KC theorem 2.14. We get a prefix-free oracle machine M2 such that by

Theorem 2.9

K(Q|xn)
+
< KM2(Q|xn) = K(Q|n)− n+ 2,

for all Q ∈ Q̂xn (with the additive constant implicit in “
+
<” depending on M2).

Lemma 4.6. There is a Turing machine, depending on ρ, that computes xn on

input ρn, for all n ∈ N. Particularly

K(Qn|ρn) ≤ K(Qn|xn) + cρ,

for all n ∈ N, and some constant cρ depending on ρ.

60

Proof. Let (qk)k∈N be a monotonically increasing, computable sequence, such that

limk→∞ qk = ρ. By the construction of M in Step 1, we can consider xn as a

(uniformly in n) left-c.e. real; for this purpose we identify x ∈ {0, 1}n with the

real 0.x for the moment. So for each n there is a monotonically increasing sequence

(rn,k)k∈N, such that limk→∞ rn,k = xn; and 〈n, k〉 7→ rn,k is computable.

Hence, there is an n0 ∈ N, such that for all n ≥ n0, we have: rn,k ≥ xn not after

qk ≥ ρn, for increasing k. For a proof by contradiction assume there was an infinite

N ⊂ N, such that for all n ∈ N , qk ≥ ρn before rn,k ≥ xn, for increasing k.

We construct the following oracle machine M1. On input x∗n, M1 enumerates the

sequence (rn,k)k∈N till the first index k0, such that rn,k0 ≥ xn. Let s be the biggest

rational in {0, 1}n+2·blognc, such that s ≤ qk0 . M1 outputs s.

For all n ∈ N , M1 computes ρn on input x∗n.3 Therefore

K(ρn)
+
< KM1(ρn) + cM1 ≤ `(x∗n) + cM1

+
< n+ K(n) + cM1 ,

for the infinitely many n ∈ N (due to Theorem 2.13) and some constant cM1 . This

yields a contradiction to the fact that ρn = ρ�(n+ 2 · blog nc) and ρ is Martin-Löf

random (due to Theorem 2.13, we have K(n)
+
< log n+ 2 log log n, for all n ∈ N).

So we have for all n ≥ n0: rn,k ≥ xn not after qk ≥ ρn, for increasing k. Due to

this fact, we can build a prefix-free machine M2, similar to M1, that for all n ≥ n0

computes xn from input ρn. Note that M2 depends on ρ.

3Because (for n ∈ N) on the one hand, if s < ρn ≤ qk0 this contradicts the construction, since
ρn ∈ {0, 1}n+2·blognc. And on the other hand, if s > ρn, then ρn + 0.0(n+2·blognc−1)1 ≤
qk0 ≤ ρ, which is a contradiction to ρ being irrational and thus having a unique binary
representation.

61

Step 4

We obtain for all n ∈ N

I(Un : ρn)
+
> [K(Qn|n) + K(n)−K(K(n)|n)]−K(Qn|Un)−K(Qn|ρn)

+
> [K(Qn|n) + K(n)−K(K(n)|n)]−K(n)−K(Qn|ρn)

+
> [K(Qn|n) + K(n)−K(K(n)|n)]−K(n)− [K(Qn|n)− n− cρ]

= n−K(K(n)|n)− cρ,

where the first inequality is due to Step 1, the second one due to Step 2 (inequality

4.3), and the third one due to Step 3 (Lemma 4.6 and 4.5).

4.2 Some implications

We proceed with discussing a version of the forbidden information theorem 4.1

for two infinite sequences, and two probabilistic assertions that follow from the

forbidden information theorem 4.1.

4.2.1 A version for two infinite sequences

The following corollary will be important for us when we come back to complete,

consistent extensions of PA in the last part of this chapter, since it makes the in-

dependence postulate directly applicable. Levin does not mention this corollary

Corollary 4.7. Let ρ be a Martin-Löf random, left-c.e. real. Let U be a total

extension of u. Then we have

Î(U : ρ) =∞.

62

Proof. Have in mind the proof of the forbidden information theorem 4.1 and

the notations we used there. Particularly, we proved Lemma 4.6 stating that

K(Qn|ρn) ≤ K(Qn|xn) + cρ, for all n ∈ N.

Obviously, we have K(Qn|〈ρ, n0 . . .〉)
+
< K(Qn|ρn). (We have to write “〈ρ, n0 . . .〉”

instead of “〈ρ, n〉”, since we did not define the pairing function for a mix of finite

and infinite sequences.) Furthermore, there is a prefix-free oracle machine that,

with ρ on its oracle tape and input n∗a(Qn)∗(〈ρ,n0...〉), computes Qn, so

K(Qn|ρ)
+
< K(n) + K(Qn|〈ρ, n0 . . .〉).

Together, we obtain

K(Qn|ρ)
+
< K(n) + K(Qn|xn) + cρ.

Therefore, we get for all n ∈ N

Î(U : ρ)
+
= log

∑
x,y∈N

m(x|U) ·m(y|ρ) · 2I(x:y)

+
> K(Qn)−K(Qn|U)−K(Qn|ρ)

+
> K(Qn)−K(Qn|U)−K(Qn|xn)−K(n)− cρ
+
> [K(Qn|n) + K(n)−K(K(n)|n)]−K(n)− [K(Qn|n)− n]−K(n)− cρ
+
> n−K(K(n)|n)−K(n)− cρ
+
> n− log log n− 2 log n− cρ,

where the third last inequality is due to Lemma 4.4, inequality 4.2 (U meets the

requirements set up for Un) and Lemma 4.5; and the last inequality is due to

Remark 4.2 and Theorem 2.13.

So Î(U : ρ) =∞.

63

4.2.2 Two probabilistic assertions

We proceed with discussing two probabilistic assertion, one with respect to partial,

and one with respect to total extensions of u. They are particularly interesting

when interpreting them with respect to randomized algorithms.

The following theorem is not stated in “Forbidden Information”. However, it is

similar to “Corollary 1” but stronger, and indicated in footnote 7 in the paper.

Keep in mind the definitions of d and cρ in the proof of the forbidden information

theorem 4.1.

Theorem 4.8 (“Corollary 1”). Let (Pn)n∈N be a family of uniformly lower semi-

computable discrete measures. Then, given n ∈ N, for any Un ∈ {0, 1}2
n+d

that is

a total extension of u on {0, 1}n+d, we have

Pn(Un)
∗
< 2−n,

with the multiplicative constant implicit in “
∗
<” depending on P .

By Section 2.1.4, for a randomized algorithm, the probability that it outputs y

on input n is computable. So we can apply the above theorem and obtain the

following corollary.

Corollary 4.9. The probability for a randomized algorithm to compute a total

extension of u on {0, 1}n+d, on input n, is less than or equal to 2−n, up to a

multiplicative constant depending on the algorithm.

Proof of Theorem 4.8. For the following argumentation, have in mind the proof of

the forbidden information theorem 4.1 and the notations we used there.

Since 〈x, n〉 7→ Pn(x) is computable, we have Pn(x)
∗
< m(x|n), for all n ∈ N,

x ∈ {0, 1}∗, with the multiplicative constant implicit in “
∗
<” depending on P (see

Remark 2.20). Hence

Pn(x) · 2I(x:y|n) ∗< 2−K(x|n)+K(x|n)−K(x|y,K(y|n),n) ≤ 1, (4.4)

64

for all n ∈ N, x, y ∈ {0, 1}∗, due to Lemma 3.5.

The forbidden information theorem 4.1 works with Un the way we defined it now,

too. As in the proof of that theorem, let Qn be the total extension of the partial

computable predicate P on {0, 1}n via Un. So particularly, Qn is uniformly com-

putable from Un and vice versa. Therefore I(xn : Un|n)
+
= I(xn : Qn|n), for all

n ∈ N (Theorem 3.10 can be easily modified to hold for the conditional version of

I as well).

Furthermore, we have

I(xn : Qn|n) = K(xn|n) + K(Qn|n)−K(xn, Qn|n)

+
> K(xn|n) + K(Qn|xn) + n−K(xn, Qn|n)

+
> K(xn, Qn|n) + n−K(xn, Qn|n)

= n,

for all n ∈ N, where the first inequality is due to Lemma 4.5 and the second one

due to Theorem 2.11.

Together with inequality 4.4, we obtain

1
∗
> Pn(Un) · 2I(Un:xn|n) ∗> Pn(Un) · 2n,

for all n ∈ N.

We turn to a probabilistic assertion regarding total extensions of u. It is important

to mention, that the below Theorem 4.10 was already proved by Jokusch and

Soare [JS72] with respect to the uniform measure (Lebesgue measure). It may

be that their proof can be easily extended to arbitrary computable probability

measures and it seems likely that a proof for arbitrary computable probability

measures was already published somewhere, though we are not aware of such

work. Anyway, we state Theorem 4.10, since it can be very easily derived from the

forbidden information theorem 4.1 in combination with the second independence

65

conservation inequality for infinite sequences (Theorem 3.21). Note that Levin

does not mention Theorem 4.10 in “Forbidden Information”.

Let

E := {α ∈ {0, 1}∞ : there is a total extension of u that is computable in α}.

Theorem 4.10. Let P be a computable continuous probability measure. Then

P (E) = 0.

Proof. By Corollary 4.7 and Theorem 3.21, we have Î(α : Ω) =∞, for all α ∈ E.

Therefore, by Corollary 3.23, we obtain P (E) = 0.

Remember the discussion of randomized operators in Section 2.1.4. Now we con-

sider a randomized operator that gets no input on its oracle tape and tries to guess

a total extension of u.

Corollary 4.11. The probability that a randomized operator with no input com-

putes a total extension of u is zero.

Proof. Let (M,Q) be a randomized operator that gets no input. As Q is a com-

putable distribution, we have Q(E) = 0. But

E ⊃ {α ∈ {0, 1}∞ : M computes a total extension of u

with α on its randomness tape}.

4.3 Consequences for the completion of PA

Let us come back to the problem of finding a complete, consistent extension of

PA, that we discussed in the introduction and in Section 2.4.2. Gödel showed with

his incompleteness theorem that the completion is impossible if we only allow

66

computable methods. However, what the incompleteness theorem does not rule

out is the possibility of such a completion by other realistic means, such as random

or other processes (particularly when we keep in mind that there are continuum

many consistent completions of PA4).

Let us give an example. We consider a problem that is - at the first sight - similar

to the completion task, namely generating Martin-Löf random sequences. These

sequences are not computable.5 However, by Definition 2.23 and Theorem 2.24,

the set of Martin-Löf random reals has Lebesgue measure one. This means that an

independent, uniformly distributed sequence of {0, 1}-valued random variables is

Martin-Löf random with probability one (as the Lebesgue measure is the product

measure on {0, 1}∞ that is induced by the uniform distribution on {0, 1}). So

theoretically, we can use a randomized method, namely flipping a fair coin, to

generate a solution for a problem that has no computable solutions.

One may wonder, if randomized or other realistic methods could generate a con-

sistent completion of PA, too. In this section we want to argue, that this is not

the case, i.e. we can extend Gödel’s assertion to noneffective methods.

Note that, in what follows, it will be necessary to distinguish between “Gödel’s

incompleteness theorem” which refers to the formal assertion proved by Gödel, on

the one hand, and what we want to call “Gödel’s thesis”, namely that there is no

anyhow effectively calculable consistent completion of PA, on the other hand.

Now first, we want to mention an extension of Gödel’s incompleteness theorem to

randomized operators that can be easily derived from the forbidden information

theorem 4.1. And second and most important, we will present the forbidden

information thesis 4.14, the extension of Gödel’s thesis we already mentioned in

the introduction.

4Roughly speaking, this can be seen as follows. For each consistent extension of PA that
contains only a finite number of additional axioms, we have the binary choice whether we
take the “next” undecidable sentence (that exists due to the incompleteness theorem) or its
contrary as new axiom. So we have a countable number of binary choices to determine a
complete, consistence extension of PA and therefore continuum many such extensions (since
all these extensions differ from each other).

5Otherwise the Kolmogorov complexity of an initial segment of length n would be of order
K(n), which contradicts the definition.

67

4.3.1 Extending Gödel’s incompleteness theorem to

randomized operators

As mentioned in the example above, there are random processes that generate

incomputable sequences, namely Martin-Löf random ones, with probability one.

Fitting well into the context, we state the following theorem and its corollary which

show that we do not have such random processes with respect to consistent com-

pletions of PA, at least if we only allow processes that are induced by randomized

operators, i.e. that have computable distributions. The statements can be proved

similar to Theorem 4.10 and Corollary 4.11, using Theorem 2.34.

Theorem 4.12. Let P be a computable continuous probability measure. Then

P ({α ∈ {0, 1}∞ : α is PA-complete}) = 0.

Corollary 4.13. The probability that a randomized operator with no input com-

putes a complete, consistent extension of PA is zero.

It is important to mention that, as was the case with Theorem 4.10, Theorem

4.12 was already proved by Jokusch and Soare [JS72] with respect to the uniform

measure (Lebesgue measure). It seems very likely that a generalization to arbitrary

computable probability measures has already been proved too, though we could

not find any publication containing such a generalization. We stated the theorem

anyway since it suits into the context, and since its proof - for arbitrary computable

probability measures - is so immediate by the forbidden information theorem 4.1

in combination with the second independence conservation inequality for infinite

sequences (Theorem 3.21).

4.3.2 Extending Gödel’s thesis using the independence

postulate

We go one step further and come to the central thesis we review in the present

work. The Church-Turing thesis gives Gödel’s incompleteness theorem a meaning

68

beyond the scope of the formal language of mathematics: there is no anyhow effec-

tively calculable consistent completion of PA. As already mentioned, we refer to

this assertion as Gödel’s thesis. Similarly, we can combine the forbidden informa-

tion theorem 4.1 with the independence postulate to obtain a fundamental thesis

regarding the physical world that is an extension of Gödel’s thesis.

Thesis 4.14 (Forbidden information thesis6). No sequence that is generated by

any locatable physical process is a consistent completion of PA.

To be more precise, the argumentation for this thesis is that each consistent com-

pletion α of PA computes a total extension of u (by Theorem 2.34) and therefore

has infinite mutual information with the halting probability Ω, i.e. Î(α : Ω) =∞
(due to Corollary 4.7 and the independence conservation inequality for algorithmic

operators, Theorem 3.21). Thus, if we accept the independence postulate, α can

not be a sequence generated by any locatable physical process.

Keep in mind, that the weaknesses of the inependence postulate, which we dis-

cussed in Section 3.3.3, completely transfer to the forbidden information thesis

4.14!

Levin sees the forbidden information thesis 4.14 particularly as a reply to the

following statement by Gödel:

“Namely, it turns out that in the systematic establishment of the ax-

ioms of mathematics, new axioms, which do not follow by formal logic

from those previously established, again and again become evident. It

is not at all excluded by the negative results mentioned earlier that nev-

ertheless every clearly posed mathematical yes-or-no question is solv-

able in this way. For it is just this becoming evident of more and more

6We call this thesis “forbidden information thesis” since it is the central thesis of the paper
“Forbidden Information” (although Levin does not explicitly mention it in this precise form);
and moreover, it “forbids” the consistent completion of PA in reality. Levin did not give any
title to this thesis.

69

new axioms on the basis of the meaning of the primitive notions that

a machine cannot imitate.”7

In Levin’s opinion, the forbidden information thesis 4.14 “dous[es] Gödel’s hope”

([Lev10], p. 7) concerning the realizability of a consistent completion of PA by

non-algorithmic means.

7Kurt Gödel. The modern development of the foundations of mathematics in the light of
philosophy. In: Kurt Gödel. Collected Works. Volume III. Oxford University Press, 1961.
Cited after [Lev10], p. 1.

70

5 Conclusion

Our objective was to completely and critically elaborate Levin’s argumentation

for an extension of Gödel’s incompleteness assertion in “Forbidden Information”

[Lev10]. For the most part, we achieved this objective. We were able to present

proofs for all mathematical arguments, except for the second conservation inequal-

ity for infinite sequences (and regarding the forbidden information theorem, we had

to slightly vary its content to be able to proof it). This was the main part of the

work. And we critically discussed the non-mathematical arguments by weighing

thoroughly their pros and cons.

So we can confirm the validity of all mathematical arguments (with the possible

exception of the second conservation inequality for infinite sequences). However,

the non-mathematical independence postulate could not withstand a critical ex-

amination as a whole, whereby some of its underlying ideas seem justifiable. The

weaknesses of the inependence postulate completely transfer to the forbidden in-

formation thesis.

We already mentioned in the introduction, that one purpose we pursued with the

present work is to promote philosophical knowledge. Kant wrote in his “Critique

of Pure Reason” ([Kan29], A51):

“Thoughts without content are empty, intuitions without concepts are

blind. [...] Only through their union [i.e., the union of concepts and

intuitions] can knowledge arise.”

Within modern mathematics, we can observe a remarkable elaboration of mathe-

matical concepts in a strictly formal way, making intuitions “less blind ”. However

at the same time, most of these concepts do only subsist in the formal language

71

and therefore are pretty far away from intuition.1 Hence, many results regard-

ing those concepts are rather “empty” in the above philosophical sense. More

precisely, their potential for direct philosophical insight is little.2

Against this background, we regard the forbidden information thesis and its under-

lying argumentation as a good example of concepts and assertions that are formal

and quite abstract - that can however directly be brought together with substantial

real-world interpretations. As already mentioned in the introduction, the philo-

sophical content of the forbidden information thesis is the attempt of establishing

a definite limit for formal mathematical knowledge.

1In contrast to everyday language and human thoughts, the formal language needs no interpre-
tations, no contents. This can particularly be seen by the fact that machines can solve major
mathematical problems, such as finding proofs for conjectures.

2Of course, there are many very abstract formal mathematical results, that for example con-
tribute to physical and thereby also to philosophical knowledge. However, in many cases
they do not have any straightforward interpretations themselves, only in conncetion with a
complex theory.

72

Bibliography

[DH10] Rodney Downey and Denis Hirschfeldt. Algorithmic Randomness and

Complexity. Springer, 2010.

[EFT94] Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Mathe-

matical Logic. Springer, second edition, 1994.

[Gac] Peter Gacs. Lecture notes on descriptional complexity and randomness.

Lecture notes. Available online at http://www.cs.bu.edu/faculty/

gacs/papers/ait-notes.pdf (accessed 13 September 2012).

[Gan80] Robin Gandy. Church’s Thesis and Principles for Mechanisms. Studies

in Logic and the Foundations of Mathematics, 101:123–148, 1980.

[HW12] Denis Hirschfeldt and Rebecca Weber. Finite Self-Information. Com-

putability, 1:85–98, 2012.

[JS72] Carl Jockusch and Robert Soare. Pi01 classes and degrees of theories.

Transactions of the American Mathematical Society, 172:33–56, 1972.

[Kan29] Immanuel Kant. Critique of Pure Reason. MacMillan, 1929. Translated

by Norman Kemp Smith.

[Kol68] Andrey Kolmogorov. Three approaches to the quantitive definition of

information. International Journal of Computer Mathematics, 2:157–

168, 1968.

[Lev74] Leonid Levin. Laws of Information Conservation (Nongrowth) and As-

pects of the Foundation of Probability Theory. Problems of Information

Transmission, 10(3):206–210, 1974.

73

http://www.cs.bu.edu/faculty/gacs/papers/ait-notes.pdf
http://www.cs.bu.edu/faculty/gacs/papers/ait-notes.pdf

[Lev80] Leonid Levin. A concept of independence with applications in various

fields of mathematics. MIT, Laboratory for Computer Science, 1980.

[Lev84] Leonid Levin. Randomness Conservation Inequalities; Information and

Independence in Mathematical Theories. Information and Control,

61(1):15–37, 1984.

[Lev10] Leonid Levin. Forbidden Information. 2010. Preprint

(arXiv:cs/0203029v16 [cs.CC]).

[LV08] Ming Li and Paul Vitanyi. An Introduction to Kolmogorov Complexity

and Its Applications. Springer, 2008.

[Mac03] David MacKay. Information Theory, Inference, and Learning Algo-

rithms. Cambridge University Press, 2003.

[Odi92] Piergiorgio Odifreddi. Classical recursion Theory. The Theory of Func-

tions and Sets of Natural Numbers. Elsevier, 1992.

[Ste06] Frank Stephan. Martin-Löf Random and PA-complete Sets. ASL Lecture

Notes in Logic, 27:342–348, 2006.

[Zac09] Richard Zach. Hilbert’s Program. The Stanford Encyclopedia of Philos-

ophy (Spring 2009 Edition), 2009. Online encyclopedia entry. Available

online at http://plato.stanford.edu/archives/spr2009/entries/

hilbert-program/ (accessed 13 September 2012).

[ZL70] Alexandre Zvonkin and Leonid Levin. The complexity of finite objects

and the developement of the concepts of information and randomness

by means of the theory of algorithms. Russian Mathematical Surveys,

25(6):83–124, 1970.

74

http://plato.stanford.edu/archives/spr2009/entries/hilbert-program/
http://plato.stanford.edu/archives/spr2009/entries/hilbert-program/

Erklärung

Hiermit versichere ich, dass ich meine Arbeit selbstständig unter Anleitung ver-

fasst habe, dass ich keine anderen als die angegebenen Quellen und Hilfsmittel

benutzt habe, und dass ich alle Stellen, die dem Wortlaut oder dem Sinne nach

anderen Werken entlehnt sind, durch die Angabe der Quellen als Entlehnungen

kenntlich gemacht habe.

Datum Unterschrift

	Introduction
	Preliminaries
	Some basics
	Sequences
	Turing machines, computability, prefix-freeness
	Computable reals, functions and measures
	Randomized algorithms and randomized operators

	Kolmogorov Complexity
	Definition
	Basic properties of prefix Kolmogorov complexity
	The universal discrete semimeasure

	Random sequences and Levin's tests
	Random sequences
	Tests for infinite sequences
	Tests for finite sequences

	Church-Turing thesis and Gödel incompleteness
	The Church-Turing thesis
	Gödel's incompleteness theorem and the universal partial computable predicate
	Definability

	Mutual information
	Mutual information for finite sequences
	Definition and basic properties
	Independence conservation inequalities

	Mutual information for infinite sequences
	Definition and basic properties
	Independence conservation inequalities

	The independence postulate
	The postulate
	An attempt of justification
	A critical discussion

	Forbidden information
	The forbidden information theorem
	The theorem
	The proof

	Some implications
	A version for two infinite sequences
	Two probabilistic assertions

	Consequences for the completion of `39`42`"613A``45`47`"603APA
	Extending Gödel's incompleteness theorem to randomized operators
	Extending Gödel's thesis using the independence postulate

	Conclusion
	Bibliography

