Coordinating users of shared facilities via data-driven predictive assistants and game theory

Philipp Geigera,b, Michel Besservea,c, Justus Winkelmannd, Claudius Proissla, Bernhard Schölkopfa

aMax Planck Institute for Intelligent Systems, \\
bBosch Center for Artificial Intelligence, \\
cMax Planck Institute for Biological Cybernetics, \\
dBonn Graduate School of Economics

http://pgeiger.org

25th July 2019
Recently, forecasts for more efficient e.g. congested shared facilities

When can ML help? For which ‘socio-aware’ concept of objective? Which algorithms do provably help?
Setting

Facility users’ decisions – assistant-based and ideal

Assistant-based system:

- **assistant**
 - signal V
 - policy π
 - forecast A

- **users (priv.)**
 - state X
 - signals $(W_i)_{i \in I}$
 - actions $(B_i)_{i \in I}$
 - “best response to A”

- **outcome Y**

User $i \in I$ picks (time)slot $B_i \in \{1, \ldots, K\}$, \mathbb{E}-optimal under her utility U_i and forecast A

Benchmark Bayesian game G:

- **users (priv.)**
 - signal V
 - state X
 - signals $(W_i)_{i \in I}$
 - actions $(B_i)_{i \in I}$
 - “play BNE”

Users have ‘true’ prior $P(X, V, W)$, know all utility functions, are fully rational [1]

Predictive objective (simple, obs.): minimize $\| \pi(V) - P_\pi(Y|V) \|$

Coordination objective (users’-utilities-aware): $(P_\pi(B_i|V, W_i))_{i \in I}$ should be Bayesian Nash eq. of G (BNE; “solution w.r.t. util. U_i“)

Geiger, Besserve, Winkelmann, Proissl, Schoelkopf: Coordinating users of shared facilities
Coordinating users of shared facilities via data-driven predictive assistants and game theory

Motivation

Setting

What is the utility of predictions for user coordination?

Which assistant algorithms provably reach optimal predictions?

Further

Conclusions
What is the utility of predictions for user coordination?

Self-fulfilling prophecy characterization

Assumptions:

- “\(Y \perp \perp W_i \mid V \)” (“assistant-separable”)
- “\(U_i \perp \perp X \mid W_i, Y \)” (“inference-assistable”)
 (plus additional details)

Theorem

If the assistant policy \(\pi \) is a self-fulfilling prophecy

\(\| \pi(V) - P_\pi(Y \mid V) \| = 0 \)

then the corresponding strategy profile \(((P_\pi(B_i \mid V, W_i))_{i \in I}) \) is a Bayesian Nash equilibrium (BNE) of the benchmark game.

Q: But when does a self-fulfilling prophecy exist?
What is the utility of predictions for user coordination?

Self-fulfilling prophecy existence

“Large-scale/aggregated setting”

- set of user types $I = [0, 1]$
 (\rightarrow nonatomic benchmark game [3])
- V, W constant
- $Y_k := \int [B_i = k]r(i|X)di$ (fraction of user types choosing slot k)
- $U_i(k, y) - U_i(l, y) = \sum_m i^m q_m(y)$, with one q_m constant, $\neq 0$

Theorem

There exists a self-fulfilling prophecy assistant policy π
in this large-scale setting.

Proof idea Weak-* topology on distributions A,Leray-Schauder-Tychonoff fixed point theorem

Corollary Nonatomic game Bayesian Nash eq. existence result
Coordinating users of shared facilities via
data-driven predictive assistants and game theory

Motivation

Setting

What is the utility of predictions for user coordination?

Which assistant algorithms provably reach optimal predictions?

Further

Conclusions
Which assistant algorithms provably reach optimal predictions?

Assistant algorithm with guarantees, experiment

Assume dynamic large-scale, linear utilities (→ **point forecast** A of Y)

Algorithm “Expodamp”: For all stages $t \geq 1$, output

$$A^t := \pi(A^{t-1}, Y^{t-1})$$
$$:= A^{t-1} + \alpha(Y^{t-1} - A^{t-1})$$

Proposition: Expodamp’s A_t converges to self-fulfilling prophecy (Y_t to Nash).

Large real-world experiment in our campus cafeteria: confirms Expodamp against baseline
Related work and further results and

Closest related work:

- **Learning in (congestion) games** [1] studies interacting agents, but without “assistant”
- **Control-theoretic** approaches for congestion in *smart cities* via “assistants” [2], but unaware of individual users’ utilities
- Complementary: *fairness in ML, social welfare optimization*
- (Google’s “Popular times” algorithms etc. – unknown to us)
- *(Exponential smoothing – no non-influential predictions)*

Omitted parts of the paper: small-scale setting with algorithm, stochastic optimality guarantees for Expodamp

Take home message

ML for collective challenges – need analysis aware of social context

Here: predictive assistants – game theory, algorithms w. guarantees

Potentially many more such mechanisms with interesting analysis!

http://pgeiger.org